Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks

Abstract

Recent advances in silicon nanophotonics, including demonstrations of ultracompact modulators1,2,3,4, germanium waveguide photodetectors5,6,7 and wavelength-division multiplexers8,9,10, indicate the feasibility of on-chip optical interconnects integrated with multicore microprocessors11,12,13,14. Studies13,14 have suggested that direct replacement of part or all of the electrical interconnect wiring with point-to-point optical links11,12 may not provide sufficient power savings to make this approach attractive to chip designers. However, if high-bandwidth optical signals can be switched and routed using an on-chip silicon nanophotonic interconnection network, significant performance gains can be expected13,14. Here we show an ultracompact (40 × 12 µm2) wavelength-insensitive switch based on cascaded silicon microring resonators, which may bring this vision closer to reality by serving as a critical basic element for scalable on-chip optical networks. Fast (<2 ns) error-free (bit error rate < 1 × 10−12) switching of multiple (up to 9) 40-Gbit s−1 optical channels is demonstrated in a temperature-insensitive (±15 °C) device.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrograph and drop-port transmission characteristics of the switch device.
Figure 2: Characterization of spectral and temporal switching behaviour for a single-wavelength channel.
Figure 3: Demonstration of broadband wavelength-insensitive deflection switching.
Figure 4: Characterization of BER penalties under switching operation.

Similar content being viewed by others

References

  1. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electrooptic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  2. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  3. Analui, B., Guckenberger, D., Kucharski, D. & Narasimha, A. A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology. IEEE J. Solid State Circuits 41, 2945–2955 (2006).

    Article  ADS  Google Scholar 

  4. Green, W. M. J., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  ADS  Google Scholar 

  5. Ahn, D. et al. High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916–3921 (2007).

    Article  ADS  Google Scholar 

  6. Masini, G., Capellini, G., Witzens, J. & Gunn, C. A four-channel, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetectors, post deadline paper PDP31, in Conference on Optical Fiber Communication (Anaheim, California, 2007).

  7. Vivien, L. et al. High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide. Opt. Express 15, 9843–9848 (2007).

    Article  ADS  Google Scholar 

  8. Bogaerts, W. et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quant. Electron. 12, 1394–1401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. Xia, F., Rooks, M., Sekaric, L. & Vlasov, Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007).

    Article  ADS  Google Scholar 

  10. Barwicz, T. et al. Silicon photonics for compact energy-efficient interconnects. J. Opt. Networking 6, 63–73 (2007).

    Article  ADS  Google Scholar 

  11. O'Connor, I. & Gaffiot, F. in Ultra Low-Power Electronics and Design (ed. Macii, E.) 21–39 (Springer, New York, 2004).

    Book  Google Scholar 

  12. O'Connor, I. et al. Systematic simulation-based predictive synthesis of integrated optical interconnect. IEEE Trans VLSI Syst. 15, 927–940 (2007).

    Article  Google Scholar 

  13. Shacham, A., Bergman, K. & Carloni, L. On the design of a photonic network-on-chip, in Proc. 1st IEEE Int. Symp. Networks-on-Chip 53–64 (IEEE, New York, 2007).

    Google Scholar 

  14. Bergman, K., Carloni, L. P., Kash, J. A. & Vlasov, Y. in Eleventh Annual Workshop on High Performance Embedded Computing (HPEC) (Lexington, Massachusetts, 2007) 〈http://www.ll.mit.edu/HPEC/2007/index.html〉.

    Google Scholar 

  15. Small, B. A. et al. Multiple-wavelength integrated photonic networks based on microring resonator devices. J. Opt. Networking 6, 112–120 (2007).

    Article  ADS  Google Scholar 

  16. Dong, P., Preble, S. & Lipson, M. All-optical compact silicon comb switch. Opt. Express 15, 9600–9605 (2007).

    Article  ADS  Google Scholar 

  17. Little, B. E., Chu, S. T., Pan, W. & Kokubun, Y. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000).

    Article  ADS  Google Scholar 

  18. Emelett, S. & Soref, R. Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 7840–7853 (2005).

    Article  ADS  Google Scholar 

  19. Emelett, S. & Soref, R. Design and simulation of silicon microring optical routing switches. IEEE J. Lightwave Technol. 23, 1800–1807 (2005).

    Article  ADS  Google Scholar 

  20. Emelett, S. & Soref, R. Synthesis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 4439–4456 (2005).

    Article  ADS  Google Scholar 

  21. Agarwal, A. et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. J. Lightwave Technol. 24, 77–87 (2006).

    Article  ADS  Google Scholar 

  22. Chen, W. et al. Compact, full C-band, widely tunable optical dynamic dispersion compensators, post deadline paper PDP8, in Conference on Optical Fiber Communication (Anaheim, California, 2006).

  23. Hamann, H. F. et al. Hotspot-limited microprocessors: Direct temperature and power distribution measurements. IEEE J. Solid State Circ. 42, 56–65 (2007).

    Article  ADS  Google Scholar 

  24. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  25. Poon, J. K. S., Zhu, L., DeRose, G. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

    Article  ADS  Google Scholar 

  26. Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 81, 1687–1706 (1993).

    Article  Google Scholar 

  27. Dulkeith, E. et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).

    Article  ADS  Google Scholar 

  28. Xia, F., Sekaric, L. & Vlasov, Y. A. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  29. McNab, S. J., Moll, N. & Vlasov, Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge partial financial support from the Defense Advanced Research Projects Agency – Defense Sciences Office (DARPA DSO) Slow-Light program under contract N00014-07-C-0105. The authors are grateful to C. Schow for help with BER and eye-diagram measurements and much useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Vlasov.

Supplementary information

Supplementary Information

Numerical modeling of deflection switch operation (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, Y., Green, W. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon 2, 242–246 (2008). https://doi.org/10.1038/nphoton.2008.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing