Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vertically emitting microdisk lasers

Abstract

In microdisk lasers1,2,3 a ring resonator is formed by successive total internal reflections inside a circularly shaped waveguide. The photon lifetime of the resulting whispering gallery optical modes is limited mainly by the waveguide absorption. Light is usually coupled out by tunnelling owing to the disk curvature or through imperfections at the border, but the output power is hard to exploit in a potential application because the emission is mainly in the disk plane and isotropic. Here we realize vertically emitting whispering gallery lasers by implementing appropriate diffraction gratings along the disk circumference. We use terahertz quantum cascade structures4,5 and demonstrate a 50–fold increase in the optical power compared to devices without gratings, while at the same time engineering the lasing spectrum according to the grating rotational symmetry. This concept will allow the fabrication of compact arrays of single-mode terahertz sources with regular beam profiles and high output power.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Devices with a 16-period grating.
Figure 2: Vertical emission from devices with a 16-period grating.
Figure 3: Devices with a 17-period grating
Figure 4: Far-field pattern. Comparison of the computed far-field patterns of modes with different symmetry.

Similar content being viewed by others

References

  1. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  ADS  Google Scholar 

  2. Faist, J. et al. Quantum cascade disk lasers. Appl. Phys. Lett. 69, 2456–2458 (1996).

    Article  ADS  Google Scholar 

  3. Tredicucci, A. et al. Very long wavelength (λ≈16 µm) whispering gallery mode microdisk lasers. Electron. Lett. 36, 328–330 (2000).

    Article  Google Scholar 

  4. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  5. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  6. Fasching, G. et al. Terahertz microcavity quantum-cascade lasers. Appl. Phys. Lett. 87, 211112 (2005).

    Article  ADS  Google Scholar 

  7. Chassagneux, Y. et al. Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range. Appl. Phys. Lett. 90, 091113 (2007).

    Article  ADS  Google Scholar 

  8. Dunbar, L. A. et al. Small optical volume terahertz emitting microdisk quantum cascade lasers. Appl. Phys. Lett. 90, 141114 (2007).

    Article  ADS  Google Scholar 

  9. Amanti, M., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

    Article  Google Scholar 

  10. Lee, A. W. M. et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt. Lett. 32, 2840–2842 (2007).

    Article  ADS  Google Scholar 

  11. Demichel, O. et al. Surface plasmon photonic structures in terahertz quantum cascade lasers. Opt. Express 14, 5335–5345 (2006).

    Article  ADS  Google Scholar 

  12. Fan, J. A. et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express 14, 11672–11680 (2006).

    Article  ADS  Google Scholar 

  13. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2007).

    Article  ADS  Google Scholar 

  14. Colombelli, R. et al. Quantum cascade surface-emitting photonic crystal laser. Science 302, 1374–1377 (2003).

    Article  ADS  Google Scholar 

  15. Sirigu, L. et al. Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators. Opt. Express 16, 5206–5217 (2008).

    Article  ADS  Google Scholar 

  16. Levi, A. F. J. et al. Directional light coupling from microdisk lasers. Appl. Phys. Lett. 62, 561–563 (1993).

    Article  ADS  Google Scholar 

  17. Fujita, M. & Baba, T. Microgear laser. Appl. Phys. Lett. 80, 2051–2053 (2002).

    Article  ADS  Google Scholar 

  18. Nockel, J. U., Stone, A. D., Chen, G., Grossman, H. L. & Chang, R. K. Directional emission from asymmetric resonant cavities. Opt. Lett. 21, 1609–1611 (1996).

    Article  ADS  Google Scholar 

  19. Gmachl, C. et al. High-power directional emission from microlasers with chaotic resonators. Science 280, 1556–1564 (1998).

    Article  ADS  Google Scholar 

  20. Srinivasan, K. et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl. Phys. Lett. 86, 151106 (2005).

    Article  ADS  Google Scholar 

  21. Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quant. Electron. 42, 257–265 (2006).

    Article  ADS  Google Scholar 

  22. Bolivar, P. H. et al. Label-free THz sensing of genetic sequences: towards ‘THz biochips’. Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci. 362, 323–333 (2004).

    Article  ADS  Google Scholar 

  23. Kumar, S., Williams, B. S., Kohen, S. & Hu, Q. Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature. Appl. Phys. Lett. 84, 2494–2496 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission through the Research and Training Network ‘Physics of Intersubband Semiconductor Emitters’ and the integrated project ‘Teranova’. We also acknowledge support from the Italian Ministry of Research through the project ‘National Laboratory for Nanotechnology applied to Genomics and Post-Genomics’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Mahler.

Supplementary information

Supplementary Information

Supplementary Information (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, L., Tredicucci, A., Beltram, F. et al. Vertically emitting microdisk lasers. Nature Photon 3, 46–49 (2009). https://doi.org/10.1038/nphoton.2008.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing