Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale topographical control of capillary assembly of nanoparticles

Abstract

Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the capillary assembly of nanoparticles onto topographical traps of a low-wetting substrate (dimensions not to scale).
Figure 2: Comparison of capillary assembly of Au nanorods in straight-edged and funnelled traps.
Figure 3: Geometry and parametric assembly yield performance of the straight-edged trap with single auxiliary sidewall.
Figure 4: Geometry and parametric assembly yield performance of the funnelled trap with single auxiliary sidewall.
Figure 5: Spectral response of spatially programmed Au nanorod dimers.
Figure 6: Examples of two-dimensional patterns of Au nanorods fabricated by topographically templated capillary assembly.

References

  1. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    CAS  Google Scholar 

  2. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Google Scholar 

  3. Law, M., Goldberger, J. & Yang, P. D. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 34, 83–122 (2004).

    CAS  Google Scholar 

  4. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    CAS  Google Scholar 

  5. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotech. 7, 11–23 (2012).

    CAS  Google Scholar 

  6. Caruge, J. M., Halpert, J. E., Wood, V., Bulovic, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photon. 2, 247–250 (2008).

    CAS  Google Scholar 

  7. Goris, B. et al. Plasmon mapping in Au@Ag nanocube assemblies. J. Phys. Chem. C 118, 15356–15362 (2014).

    CAS  Google Scholar 

  8. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

  9. Vigderman, L., Khanal, B. P. & Zubarev, E. R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012).

    CAS  Google Scholar 

  10. Nepal, D. et al. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle–particle–surface interactions. ACS Nano 6, 5693–5701 (2012).

    CAS  Google Scholar 

  11. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotech. 10, 412–417 (2015).

    CAS  Google Scholar 

  12. Halas, N. J., Lal, S., Chang, W.-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    CAS  Google Scholar 

  13. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. Building plasmonic nanostructures with DNA. Nat. Nanotech. 6, 268–276 (2011).

    CAS  Google Scholar 

  14. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nat. Nanotech. 11, 47–52 (2016).

    CAS  Google Scholar 

  15. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    CAS  Google Scholar 

  16. Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

    Google Scholar 

  17. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    CAS  Google Scholar 

  18. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

    CAS  Google Scholar 

  19. Yin, Y., Lu, Y., Gates, B. & Xia, Y. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

    CAS  Google Scholar 

  20. Cui, Y. et al. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093–1098 (2004).

    CAS  Google Scholar 

  21. Henzie, J., Andrews, S. C., Ling, X. Y., Li, Z. & Yang, P. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl Acad. Sci. USA 110, 6640–6645 (2013).

    CAS  Google Scholar 

  22. Kraus, T. et al. Nanoparticle printing with single-particle resolution. Nat. Nanotech. 2, 570–576 (2007).

    CAS  Google Scholar 

  23. Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. & Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513–11521 (2007).

    CAS  Google Scholar 

  24. Mastrangeli, M. The fluid joint: the soft spot of micro- and nanosystems. Adv. Mater. 27, 4254–4272 (2015).

    CAS  Google Scholar 

  25. Greybush, N. J. et al. Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. ACS Nano 8, 9482–9491 (2014).

    CAS  Google Scholar 

  26. Ni, S., Klein, M. J., Spencer, N. D. & Wolf, H. Cascaded assembly of complex multiparticle patterns. Langmuir 30, 90–95 (2014).

    CAS  Google Scholar 

  27. Zhou, Y. et al. Shape-selective deposition and assembly of anisotropic nanoparticles. Nano Lett. 14, 2157–2161 (2014).

    CAS  Google Scholar 

  28. Collet, M. et al. Large-scale assembly of single nanowires through capillary-assisted dielectrophoresis. Adv. Mater. 27, 1268–1273 (2015).

    CAS  Google Scholar 

  29. Hanske, C. et al. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett. 14, 6863–6871 (2014).

    CAS  Google Scholar 

  30. Kuemin, C., Nowack, L., Bozano, L., Spencer, N. D. & Wolf, H. Oriented assembly of gold nanorods on the single-particle level. Adv. Funct. Mater. 22, 702–708 (2012).

    CAS  Google Scholar 

  31. Ni, S., Leemann, J., Wolf, H. & Isa, L. Insights into mechanisms of capillary assembly. Faraday Discuss. 181, 225–242 (2015).

    CAS  Google Scholar 

  32. Kuemin, C., Stutz, R., Spencer, N. D. & Wolf, H. Precise placement of gold nanorods by capillary assembly. Langmuir 27, 6305–6310 (2011).

    CAS  Google Scholar 

  33. Frenkel, D. Order through entropy. Nat. Mater. 14, 9–12 (2015).

    CAS  Google Scholar 

  34. Pinedo Rivera, T. et al. Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: plasmonic properties of deterministic nanostructures. J. Vac. Sci. Technol. B 26, 2513–2519 (2008).

    CAS  Google Scholar 

  35. Oliver, J. F., Huh, C. & Mason, S. G. Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 59, 568–581 (1977).

    CAS  Google Scholar 

  36. Hu, H. & Larson, R. G. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21, 3963–3971 (2005).

    CAS  Google Scholar 

  37. Gordon, M. J. & Peyrade, D. Separation of colloidal nanoparticles using capillary immersion forces. Appl. Phys. Lett. 89, 053112 (2006).

    Google Scholar 

  38. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Google Scholar 

  39. Siegfried, T., Ekinci, Y., Martin, O. J. F. & Sigg, H. Engineering metal adhesion layers that do not deteriorate plasmon resonances. ACS Nano 7, 2751–2757 (2013).

    CAS  Google Scholar 

  40. Cetin, A. E., Etezadi, D. & Altug, H. Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv. Opt. Mater. 2, 866–872 (2014).

    CAS  Google Scholar 

  41. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  42. Duan, H. G., Fernandez-Dominguez, A. I., Bosman, M., Maier, S. A. & Yang, J. K. W. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012).

    CAS  Google Scholar 

  43. Scholl, J. A., Garcia-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    CAS  Google Scholar 

  44. Teulle, A. et al. Multimodal plasmonics in fused colloidal networks. Nat. Mater. 14, 87–94 (2015).

    CAS  Google Scholar 

  45. Jung, H., Cha, H., Lee, D. & Yoon, S. Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292–12300 (2015).

    CAS  Google Scholar 

  46. Baffou, G., Girard, C., Dujardin, E., Colas des Francs, G. & Martin, O. J. F. Molecular quenching and relaxation in a plasmonic tunable system. Phys. Rev. B 77, 121101 (2008).

    Google Scholar 

  47. Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).

    Google Scholar 

  48. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    CAS  Google Scholar 

  49. Hörl, A., Trügler, A. & Hohenester, U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013).

    Google Scholar 

  50. Kern, A. M. & Martin, O. J. F. Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A 26, 732–740 (2009).

    Google Scholar 

  51. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Center of Micro/Nanotechnology (CMI) of EPFL for the valuable discussions and support. This research was funded by the European Commission (FP7-ICT-2011-7, NANO-VISTA, under grant agreement no. 288263), the Interuniversity Attraction Poles program MicroMAST (IAP 7/38) initiated by the Belgian Science Policy Office, and the Swiss National Science Foundation project 200020_153662.

Author information

Authors and Affiliations

Authors

Contributions

V.F. conceived the research, designed the experiments, built the experimental set-up, fabricated the substrates, performed the assembly experiments, analysed assembly and STEM-EELS data, and wrote the manuscript. M.M. conceived the research, designed the assembly experiments, analysed the assembly data and wrote the manuscript. G.D.B. and J.B. performed the numerical simulations and revised the manuscript. D.T.L.A. performed the STEM-EELS measurements, analysed the corresponding data and revised the manuscript. E.S. performed the assembly experiments and analysed the assembly data. O.J.F.M. supervised the numerical simulations and revised the manuscript. J.Br. supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Juergen Brugger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flauraud, V., Mastrangeli, M., Bernasconi, G. et al. Nanoscale topographical control of capillary assembly of nanoparticles. Nature Nanotech 12, 73–80 (2017). https://doi.org/10.1038/nnano.2016.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing