Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

Abstract

Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment and operation principle.
Figure 2: SW transport in a straight waveguide.
Figure 3: Channelling SWs at an angle.
Figure 4: Gating of SW propagation.

Similar content being viewed by others

References

  1. Grundler, D. Reconfigurable magnonics heats up. Nature Phys. 11, 438–441 (2015).

    Article  CAS  Google Scholar 

  2. Stamps, R. L. et al. The 2014 magnetism roadmap. J. Phys. D 47, 333001 (2014).

    Article  Google Scholar 

  3. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  4. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  5. Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

    Article  CAS  Google Scholar 

  6. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  7. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin–torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  CAS  Google Scholar 

  8. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  CAS  Google Scholar 

  9. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  10. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  11. Vogel, M. et al. Optically reconfigurable magnetic materials. Nature Phys. 11, 487–491 (2015).

    Article  CAS  Google Scholar 

  12. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  13. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

  14. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nature Phys. 11, 1022–1026 (2015).

    Article  CAS  Google Scholar 

  15. Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes. Phys. Rev. B 77, 064406 (2008).

    Article  Google Scholar 

  16. Sebastian, T. et al. Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide. Appl. Phys. Lett. 100, 112402 (2012).

    Article  Google Scholar 

  17. Yu, H. et al. High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film. Appl. Phys. Lett. 100, 262412 (2012).

    Article  Google Scholar 

  18. Pirro, P. et al. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers. Appl. Phys. Lett. 104, 012402 (2014).

    Article  Google Scholar 

  19. Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961).

    Article  Google Scholar 

  20. Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

    Article  Google Scholar 

  21. Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

    Article  CAS  Google Scholar 

  22. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, 262509 (2009).

    Article  Google Scholar 

  23. Garcia-Sanchez, F. et al. Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015).

    Article  Google Scholar 

  24. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  Google Scholar 

  25. Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D 43, 264004 (2010).

    Article  Google Scholar 

  26. Demokritov, S. O. et al. Tunneling of dipolar spin waves through a region of inhomogeneous magnetic field. Phys. Rev. Lett. 93, 047201 (2004).

    Article  CAS  Google Scholar 

  27. Chumak, A. V., Neumann, T., Serga, A. A., Hillebrands, B. & Kostylev, M. P. A current-controlled, dynamic magnonic crystal. J. Phys. D 42, 205005 (2009).

    Article  Google Scholar 

  28. Barman, S., Barman, A. & Otani, Y. Controlled propagation of locally excited vortex dynamics in linear nanomagnet arrays. J. Phys. D 43, 335001 (2010).

    Article  Google Scholar 

  29. Huber, R., Schwarze, T. & Grundler, D. Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal. Phys. Rev. B 88, 100405 (2013).

    Article  Google Scholar 

  30. Haldar, A. & Adeyeye, A. O. Vortex chirality control in circular disks using dipole-coupled nanomagnets. Appl. Phys. Lett. 106, 032404 (2015).

    Article  Google Scholar 

  31. Demidov, V. E. et al. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett. 95, 112509 (2009).

    Article  Google Scholar 

  32. Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. 44, 6–12 (2008).

    Article  CAS  Google Scholar 

  33. Schneider, T. et al. Spin-wave tunnelling through a mechanical gap. Europhys. Lett. 90, 27003 (2010).

    Article  Google Scholar 

  34. Kozhanov, A. et al. Dispersion and spin wave ‘tunneling’ in nanostructured magnetostatic spin waveguides. J. Appl. Phys. 105, 07D311 (2009).

    Article  Google Scholar 

  35. Hansen, U.-H., Gatzen, M., Demidov, V. E. & Demokritov, S. O. Resonant tunneling of spin-wave packets via quantized states in potential wells. Phys. Rev. Lett. 99, 127204 (2007).

    Article  Google Scholar 

  36. Jung, H. et al. Logic operations based on magnetic-vortex-state networks. ACS Nano. 6, 3712–3717 (2012).

    Article  CAS  Google Scholar 

  37. Kumar, D., Barman, S. & Barman, A. Magnetic vortex based transistor operations. Sci. Rep. 4, 4108 (2014).

    Article  CAS  Google Scholar 

  38. Han, D.-S. et al. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals. Sci. Rep. 3, 2262 (2013).

    Article  Google Scholar 

  39. Topp, J., Heitmann, D. & Grundler, D. Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays. Phys. Rev. B 80, 174421 (2009).

    Article  Google Scholar 

  40. Ando, K. et al. Electric detection of spin wave resonance using inverse spin-Hall effect. Appl. Phys. Lett. 94, 262505 (2009).

    Article  Google Scholar 

  41. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  42. Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nature Nanotech. 9, 59–63 (2014).

    Article  CAS  Google Scholar 

  43. Yu, H. et al. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 4, 6848 (2014).

    Article  CAS  Google Scholar 

  44. Hahn, C. et al. Measurement of the intrinsic damping constant in individual nanodisks of Y3Fe5O12 and Y3Fe5O12|Pt. Appl. Phys. Lett. 104, 152410 (2014).

    Article  Google Scholar 

  45. Seo, S.-M., Lee, K.-J., Yang, H. & Ono, T. Current-induced control of spin-wave attenuation. Phys. Rev. Lett. 102, 147202 (2009).

    Article  Google Scholar 

  46. Wang, Z., Sun, Y., Wu, M., Tiberkevich, V. & Slavin, A. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011).

    Article  Google Scholar 

  47. Donahue, M. J. & Porter, D. G. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, September 1999).

  48. Kumar, D., Dmytriiev, O., Ponraj, S. & Barman, A. Numerical calculation of spin wave dispersions in magnetic nanostructures. J. Phys. D 45, 015001 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation, the Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP award no. NRF-CRP 10-2012-03), SMF-NUS New Horizon Awards and Ministry of Education, Singapore AcRF Tier 2 grant (no. R-263-000-A19-112). A.O.A. is a member of the Singapore Spintronics Consortium (SG-SPIN).

Author information

Authors and Affiliations

Authors

Contributions

A.H. and A.O.A. conceived the project. A.H. fabricated the samples and carried out the experiments. D.K. performed the micromagnetic simulations. A.O.A. supervised the overall project. All authors discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Adekunle Olusola Adeyeye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, A., Kumar, D. & Adeyeye, A. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nature Nanotech 11, 437–443 (2016). https://doi.org/10.1038/nnano.2015.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing