Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

An Erratum to this article was published on 03 August 2016

This article has been updated

Abstract

Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii–Moriya interactions (DMIs), which reach a value close to 2 mJ m–2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacial DMI in asymmetric magnetic multilayers.
Figure 2: Skyrmion diameter as a function of the external out-of-plane magnetic field H.
Figure 3: Micromagnetic simulations and experimental measurements of mean domain-width evolution with DMI after demagnetization.
Figure 4: Evolution of the skyrmion size in patterned nanoscale disks and tracks.

Change history

  • 23 March 2016

    In the version of this Article originally published online, in the equation 'W = (1/4π) ∫ s · (∂xsys) dxdy', the symbol for the vector product was missing. In refs 5 and 39 the author name should have read 'Braun, H. B.'. These errors have been corrected in all versions of the Article.

  • 20 July 2016

    In the version of this Article originally published, the equation 'W = (1/4π) ∫ s · (∂xs × ∂ys) dxdy' was missing the symbol for the vector product and the first erratum did not correct the problem. Further, unrelated, changes were also required: in the sentence beginning 'We present next the micromagnetic simulations…', 'ten' should have been 'eleven', and in the sentence beginning 'With the smallest exchange constant…', '1.6 pJ m–1' should have read '1.6 mJ m–2'. All of these errors have now been corrected in the online versions of the Article.

References

  1. Bogdanov, A. & Yablonskii, A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. JETP Lett. 68, 101–103 (1989).

    Google Scholar 

  2. Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

    Article  CAS  Google Scholar 

  3. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  4. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  5. Braun, H. B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–112 (2012).

    Article  CAS  Google Scholar 

  6. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  7. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    Article  CAS  Google Scholar 

  8. Ritz, R. et al. Formation of a topological non-Fermi liquid in MnSi. Nature 497, 231–234 (2013).

    Article  CAS  Google Scholar 

  9. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D 44, 392001 (2011).

    Article  Google Scholar 

  10. Neubauer, A. et al. Topological Hall effect in the α phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  11. Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).

    Article  CAS  Google Scholar 

  12. Tonomura, A. et al. Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett. 12, 1673–1677 (2012).

    Article  CAS  Google Scholar 

  13. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  14. Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nature Commun. 6, 7238 (2015).

    Article  Google Scholar 

  15. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  16. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  17. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  18. Chen, G., Mascaraque, A., N'Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  Google Scholar 

  19. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  20. Baltz, V., Marty, A., Rodmacq, B. & Dieny, B. Magnetic domain replication in interacting bilayers with out-of-plane anisotropy: application to Co∕Pt multilayers. Phys. Rev. B 75, 014406 (2007).

    Article  Google Scholar 

  21. Malozemoff, A. P. & Slonczewski, J. C. in Magnetic Domain Walls in Bubble Materials (ed. Wolfe, R.) Ch. II, III (Academic Press, 1979).

    Google Scholar 

  22. Moutafis, C., Komineas, S. & Bland, J. A. C. Dynamics and switching processes for magnetic bubbles in nanoelements. Phys. Rev. B 79, 224429 (2009).

    Article  Google Scholar 

  23. Moutafis, C. et al. Magnetic bubbles in FePt nanodots with perpendicular anisotropy. Phys. Rev. B 76, 104426 (2007).

    Article  Google Scholar 

  24. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nature Phys. 11, 225–228 (2015).

    Article  Google Scholar 

  25. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  26. Kabanov, Y. P. et al. In-plane field effects on the dynamics of domain walls in ultrathin Co films with perpendicular anisotropy. IEEE Trans. Magn. 46, 2220–2223 (2010).

    Article  CAS  Google Scholar 

  27. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Article  Google Scholar 

  28. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Preprint at http://arxiv.org/abs/1501.05511 (2015).

  29. Franken, J. H., Herps, M., Swagten, H. J. M. & Koopmans, B. Tunable chiral spin texture in magnetic domain walls. Sci. Rep. 4, 5248 (2014).

    Article  CAS  Google Scholar 

  30. Donahue, M. J. & Porter, D. G. OOMMF User's Guide Version 1.0. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, 1999).

    Book  Google Scholar 

  31. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  32. Eyrich, C. et al. Effect of substitution on the exchange stiffness and magnetization of Co films. Phys. Rev. B 90, 235408–235419 (2015).

    Article  Google Scholar 

  33. Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultra-thin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

    Article  CAS  Google Scholar 

  34. Hiramatsu, R., Kim, K.-J., Nakatani, Y., Moriyama, T. & Ono, T. Proposal for quantifying the Dzyaloshinskii–Moriya interaction by domain walls annihilation measurement. Jpn. J. Appl. Phys. 53, 108001 (2014).

    Article  Google Scholar 

  35. Belmeguenai, M. et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405(R) (2015).

    Article  Google Scholar 

  36. Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Commun. 6, 6733 (2015).

    Article  CAS  Google Scholar 

  37. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  Google Scholar 

  38. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  Google Scholar 

  39. Braun, H. B. Fluctuations and instabilities of ferromagnetic domain–wall pairs in an external magnetic field. Phys. Rev. B 50, 16485 (1995).

    Article  Google Scholar 

  40. Woo, S. et al. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Preprint at http://arxiv.org/abs/1502.07376 (2015).

Download references

Acknowledgements

The authors acknowledge B. Sarafimov and M. Bechtel for their technical support at the SLS and Bessy II beamlines. The STXM experiments were performed using the X07DA (PolLux) beamline at the SLS, Paul Scherrer Institüt, Villigen, Switzerland and the Maxymus beamline BESSY II, Adlershof, Germany. The authors acknowledge financial support from the Agence Nationale de la Recherche project ANR-14-CE26-0012 ULTRASKY and from European Union grant MAGicSky No. FET-Open-665095.

Author information

Authors and Affiliations

Authors

Contributions

N.R., C.M., V.C. and A.F. conceived the project. C.D. and C.M.L. grew the films. C.A.F.V., K.G. and N.R. patterned the samples. C.M., C.M.L., N.R., J.S., N.V.H., C.A.F.V., K.B., P.Wa., P.Wo, M.W., J.R. and V.C. acquired the data at the synchrotrons. C.M.L. and N.R. treated and analysed the data with the help of C.M., P. Wa., and V.C. C.M.L., J.S. and N.R. performed the micromagnetic simulations. C.M.L., N.R., V.C. and A.F. prepared the manuscript. All authors discussed and commented the manuscript.

Corresponding authors

Correspondence to C. Moutafis, N. Reyren or V. Cros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreau-Luchaire, C., Moutafis, C., Reyren, N. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotech 11, 444–448 (2016). https://doi.org/10.1038/nnano.2015.313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing