Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds

Abstract

The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology1,2. Short molecular linkers have previously been used to create assemblies of nanoparticles3,4,5,6,7,8,9, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami10,11 can precisely organize nanoscale objects over much larger length scales. Here we show that rigid DNA origami scaffolds can be used to assemble metal nanoparticles, quantum dots and organic dyes into hierarchical nanoclusters that have a planet–satellite-type structure. The nanoclusters have a tunable stoichiometry, defined distances of 5–200 nm between components, and controllable overall sizes of up to 500 nm. We also show that the nanoscale components can be positioned along the radial DNA spacers of the nanostructures, which allows short- and long-range interactions between nanoparticles and dyes to be studied in solution. The approach could, in the future, be used to construct efficient energy funnels, complex plasmonic architectures, and porous, nanoengineered scaffolds for catalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planet–satellite nanoclusters.
Figure 2: Planet–satellite distance control.
Figure 3: Planet–satellite stoichiometry control.
Figure 4: Gold-enhanced origami nanoclusters and close-packed lattices.
Figure 5: Fluorescence quenching studied with origami nanoclusters.

Similar content being viewed by others

References

  1. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

    Article  CAS  Google Scholar 

  2. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  3. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  4. Parak, W. J. et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett. 3, 33–36 (2003).

    Article  CAS  Google Scholar 

  5. Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 126, 10832–10833 (2004).

    Article  CAS  Google Scholar 

  6. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  Google Scholar 

  7. Sebba, D. S., Mock, J. J., Smith, D. R., LaBean, T. H. & Lazarides, A. A. Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803–1808 (2008).

    Article  CAS  Google Scholar 

  8. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  9. Gandra, N., Abbas, A., Tian, L. & Singamaneni, S. Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12, 2645–2651 (2012).

    Article  CAS  Google Scholar 

  10. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  11. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  12. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  13. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  14. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    Article  CAS  Google Scholar 

  15. Yan, W. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012).

    Article  CAS  Google Scholar 

  16. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  17. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  CAS  Google Scholar 

  18. Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132, 3248–3249 (2010).

    Article  CAS  Google Scholar 

  19. Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. Int. Ed. 49, 2700–2704 (2010).

    Article  CAS  Google Scholar 

  20. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  21. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  22. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  Google Scholar 

  23. Liedl, T., Högberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structure from DNA. Nature Nanotech. 5, 520–524 (2010).

    Article  CAS  Google Scholar 

  24. Bui, H. et al. Programmable periodicity of quantum dot arrays with DNA origami nanotubes. Nano Lett. 10, 3367–3372 (2010).

    Article  CAS  Google Scholar 

  25. Deng, Z., Samanta, A., Nangreave, J., Yan, H. & Liu, Y. Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV-vis to near-IR and compatible with DNA-directed self-assembly. J. Am. Chem. Soc. 134, 17424–17427 (2012).

    Article  CAS  Google Scholar 

  26. Dutta, P. K. et al. DNA-directed artificial light-harvesting antenna. J. Am. Chem. Soc. 133, 11985–11993 (2011).

    Article  CAS  Google Scholar 

  27. Clapp, A. R., Medintz, I. L. & Mattoussi, H. Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7, 47–57 (2006).

    Article  CAS  Google Scholar 

  28. Pilo-Pais, M., Goldberg, S., Samano, E., LaBean, T. H. & Finkelstein, G. Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett. 11, 3489–3492 (2011).

    Article  CAS  Google Scholar 

  29. Dulkeith, E. et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 5, 585–589 (2005).

    Article  CAS  Google Scholar 

  30. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  31. Acuna, G. P. et al. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6, 3189–3195 (2012).

    Article  CAS  Google Scholar 

  32. Pal, S. et al. Quantum efficiency modification of organic fluorophores using gold nanoparticles on DNA origami scaffolds. J. Phys. Chem. C 117, 12735–12744 (2013).

    Article  CAS  Google Scholar 

  33. Persson, B. N. J. & Lang, N. D. Electron–hole-pair quenching of excited states near a metal. Phys. Rev. B 26, 5409–5415 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Acuna for discussions and S. Kempter for experimental advice. This work was funded by the Volkswagen Foundation, the DFG through the Nanosystems Initiative Munich (NIM), the ERC through the Advanced Investigator Grant HYMEM, and the EU commission through the Marie Curie Research Training Network ICARUS.

Author information

Authors and Affiliations

Authors

Contributions

R.S., J.D., J.F. and T.L. designed the research. R.S., J.D., E.M.R., T.Z., V.S., P.N. and T.L. designed the nanostructures. R.S., J.D., E.M.R., T.Z. and P.N. performed experiments and R.S., J.D. and T.L. wrote the manuscript.

Corresponding author

Correspondence to Tim Liedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, R., Do, J., Roller, EM. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nature Nanotech 9, 74–78 (2014). https://doi.org/10.1038/nnano.2013.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing