Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

Abstract

Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques1,2,3, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte4,5,6,7,8,9. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes10,11. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of CO2 laser-patterning of free-standing hydrated GO films to fabricate RGO–GO–RGO devices with in-plane and sandwich geometries.
Figure 2: Comparisons of CV and impedance behaviour of in-plane and sandwich devices.
Figure 3: Characterization of the water effect on GO ionic conductivity.
Figure 4: Morphology and performance characterization of laser written micro-supercapacitors.

Similar content being viewed by others

References

  1. Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    Article  CAS  Google Scholar 

  2. Pech, D. et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195, 1266–1269 (2010).

    Article  CAS  Google Scholar 

  3. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotech. 5, 651–654 (2010).

    Article  CAS  Google Scholar 

  4. Liu, X. J. & Osaka, T. All-solid-state electric double-layer capacitor with isotropic high-density graphite electrode and polyethylene oxide/LiClO4 polymer electrolyte. J. Electrochem. Soc. 143, 3982–3986 (1996).

    Article  CAS  Google Scholar 

  5. Rikukawa, M. & Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25, 1463–1502 (2000).

    Article  CAS  Google Scholar 

  6. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  7. Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    Article  CAS  Google Scholar 

  8. Gao, W., Alemany, L. B., Ci, L. J. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    Article  CAS  Google Scholar 

  9. Cerveny, S., Barroso-Bujans, F., Alegria, A. & Colmenero, J. Dynamics of water intercalated in graphite oxide. J. Phys. Chem. C 114, 2604–2612 (2010).

    Article  CAS  Google Scholar 

  10. Thampan, T., Malhotra, S., Tang, H. & Datta, R. Modeling of conductive transport in proton-exchange membranes for fuel cells. J. Electrochem. Soc. 147, 3242–3250 (2000).

    Article  CAS  Google Scholar 

  11. Park, K. W., Ahn, H. J. & Sung, Y. E. All-solid-state supercapacitor using a Nafion® polymer membrane and its hybridization with a direct methanol fuel cell. J. Power Sources 109, 500–506 (2002).

    Article  CAS  Google Scholar 

  12. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  13. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nature Nanotech. 4, 25–29 (2009).

    Article  CAS  Google Scholar 

  14. Eda, G. & Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    Article  CAS  Google Scholar 

  15. Cai, W. W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

  16. Casablanca, L. B. et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J. Am. Chem. Soc. 132, 5672–5676 (2010).

    Article  Google Scholar 

  17. Park, S. et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008).

    Article  CAS  Google Scholar 

  18. Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1375 (2010).

    Article  CAS  Google Scholar 

  19. Zhang, Y. L. et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15–20 (2009).

    Article  Google Scholar 

  20. Abraham, K. M., Jiang, Z. & Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 9, 1978–1988 (1997).

    Article  CAS  Google Scholar 

  21. Hirata, M., Gotou, T. & Ohba, M. Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503–510 (2005).

    Article  CAS  Google Scholar 

  22. Petit, C., Seredych, M. & Bandosz, T. J. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009).

    Article  CAS  Google Scholar 

  23. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  24. Saito, M., Arimura, N., Hayamizu, K. & Okada, T. Mechanisms of ion and water transport in perfluorosulfonated ionomer membranes for fuel cells. J. Phys. Chem. B 108, 16064–16070 (2004).

    Article  CAS  Google Scholar 

  25. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  CAS  Google Scholar 

  26. Punckt, C., Pope, M. A., Liu, J., Lin, Y. & Aksay, L. A. Electrochemical performance of graphene as effected by electrode porosity and graphene functionalization. Electroanalysis 22, 2834–2841 (2010).

    Article  CAS  Google Scholar 

  27. Taberna, P. L., Portet, C. & Simon, P. Electrode surface treatment and electrochemical impedance spectroscopy study on carbon/carbon supercapacitors. Appl. Phys. A 82, 639–646 (2006).

    Article  CAS  Google Scholar 

  28. Balducci, A. et al. Cycling stability of a hybrid activated carbon/poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta 50, 2233–2237 (2005).

    Article  CAS  Google Scholar 

  29. Chen, Y., Zhang, X., Zhang, D., Yu, P. & Ma, Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011).

    Article  CAS  Google Scholar 

  30. Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.G. and P.M.A. acknowledge funding support from Nanoholdings, LLC. The authors also thank B. Pradhan for discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.G. prepared the GO, fabricated devices and collected characterization data. A.L.M.R., N.S. and W.G. conducted ionic conductivity testing and data analysis. Z.L., L.S. and W.G. conducted conductivity measurements and analysed the data. L.C. and R.V. were involved in study design. P.M.A., W.G. and L.C. designed the study. P.M.A., W.G. and N.S. wrote the paper. Q.Z. and B.W. conducted self-discharge measurements and analysed the relevant data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pulickel M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Singh, N., Song, L. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotech 6, 496–500 (2011). https://doi.org/10.1038/nnano.2011.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing