Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alternating patterns on single-walled carbon nanotubes

Abstract

Scientific and technological interest in one-dimensional nanomaterials, in particular carbon nanotubes1,2, is a result of their fascinating properties and their ability to serve as templates for directed assembly. For applications in nanoelectronics it is necessary to create ordered arrays of nanotubes for large-scale integrated circuits, an area in which there has been significant progress3,4,5,6,7, and to produce controllable patterns on individual nanotubes so that multiple transistors can be fabricated on them, an area where progress has been slower8,9,10,11,12,13,14. Here, we show that judiciously selected crystalline block copolymers can be periodically decorated along carbon nanotubes, leading to amphiphilic, alternating patterns with a period of 12 nm. In addition, end-functionalization of the block copolymers allowed gold nanoparticles to be periodically attached to the nanotubes. This approach provides a facile technique for the periodic patterning of one-dimensional nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The alternating pattern of PE-b-PEO block copolymers formed on SWNTs.
Figure 2: TEM images of the five different morphologies of the block copolymer/SWNT hybrid at various block copolymer concentrations.
Figure 3: Growth mechanism of the alternating stripes on a SWNT.
Figure 4: Periodic immobilization of 5-nm gold nanoparticles on the block copolymer/SWNT hybrid.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, 2001).

    Book  Google Scholar 

  2. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  3. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    Article  CAS  Google Scholar 

  4. Ahn, J. H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    Article  CAS  Google Scholar 

  5. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  6. Li, X. L. et al. Langmuir–Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129, 4890–4891 (2007).

    Article  CAS  Google Scholar 

  7. LeMieux, M. C. et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science 321, 101–104 (2008).

    Article  CAS  Google Scholar 

  8. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  9. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  10. Czerw, R., Guo, Z., Ajayan, P. M., Sun, Y. P. & Carroll, D. L. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett. 1, 423–427 (2001).

    Article  CAS  Google Scholar 

  11. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  12. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  CAS  Google Scholar 

  13. Worsley, K. A., Moonoosawmy, K. R. & Kruse, P. Long-range periodicity in carbon nanotube sidewall functionalization. Nano Lett. 4, 1541–1546 (2004).

    Article  CAS  Google Scholar 

  14. Mackiewicz, N. et al. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 130, 8110–8111 (2008).

    Article  CAS  Google Scholar 

  15. Star, A. et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem. Int. Ed. 40, 1721–1725 (2001).

    Article  CAS  Google Scholar 

  16. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  17. Bates, F. S. & Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  18. Hawker, C. J. & Russell, T. P. Block copolymer lithography: merging ‘bottom-up’ with ‘top-down’ processes. MRS Bull. 30, 952–966 (2005).

    Article  CAS  Google Scholar 

  19. Cheng, J. Y., Ross, C. A., Smith, H. I. & Thomas, E. L. Templated self-assembly of block copolymers: top-down helps bottom-up. Adv. Mater. 18, 2505–2521 (2006).

    Article  CAS  Google Scholar 

  20. Hamley, I. W. Block Copolymers in Solution Fundamentals and Applications (Wiley, 2005).

    Book  Google Scholar 

  21. Kang, Y. J. & Taton, T. A. Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J. Am. Chem. Soc. 125, 5650–5651 (2003).

    Article  CAS  Google Scholar 

  22. Kim, H. C., Rettner, C. T. & Sundstrom L. Fabrication of 20 nm half-pitch gratings by corrugation-directed self-assembly. Nanotechnology 19, 235301 (2008).

    Article  Google Scholar 

  23. Li, C. Y., Li, L. Y., Cai, W. W., Kodjie, S. L. & Tenneti, K. K. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv. Mater. 17, 1198–1202 (2005).

    Article  CAS  Google Scholar 

  24. Li, L., Li, C. Y. & Ni, C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J. Am. Chem. Soc. 128, 1692–1699 (2006).

    Article  CAS  Google Scholar 

  25. Li, L. Y. et al. Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. Nano Lett. 6, 1007–1012 (2006).

    Article  CAS  Google Scholar 

  26. Qiao, R. & Ke, P. C. Lipid-carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc. 128, 13656–13657 (2006).

    Article  CAS  Google Scholar 

  27. Li, Z. B., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    Article  CAS  Google Scholar 

  28. Cui, H. G., Chen, Z. Y., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  29. Li, B. & Li, C. Y. Immobilizing Au nanoparticles with polymer single crystals, patterning and asymmetric functionalization. J. Am. Chem. Soc. 129, 12–13 (2007).

    Article  CAS  Google Scholar 

  30. Du, Y. J. & Brash, J. L. Synthesis and characterization of thiol-terminated poly(ethylene oxide) for chemisorption to gold surface. J. Appl. Polym. Sci. 90, 594–607 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant no. DMR-0804838.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and B.L. conceived and designed the experiments. B.L. performed the experiments, with help from L.L. and B.W. B.L. and C.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Christopher Y. Li.

Supplementary information

Supplementary information

Supplementary information (PDF 2007 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Li, L., Wang, B. et al. Alternating patterns on single-walled carbon nanotubes. Nature Nanotech 4, 358–362 (2009). https://doi.org/10.1038/nnano.2009.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing