Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis

Abstract

In many regions of the developing CNS, distinct cell types are born at different times. The means by which discrete and stereotyped temporal switches in cellular identities are acquired remains poorly understood. To address this, we have examined how visceral motor neurons (VMNs) and serotonergic neurons, two neuronal subtypes, are sequentially generated from a common progenitor pool in the vertebrate hindbrain. We found that the forkhead transcription factor Foxa2, acting in progenitors, is essential for the transition from VMN to serotonergic neurogenesis. Loss-of-function and gain-of-function experiments indicated that Foxa2 activates the switch through a temporal cross-repressive interaction with paired-like homeobox 2b (Phox2b), the VMN progenitor determinant. This mechanism bears a marked resemblance to the cross-repression between neighboring domains of transcription factors that establish discrete progenitor identities along the spatial axes. Moreover, the subsequent differentiation of central serotonergic neurons required both the suppression of VMN neurogenesis and the induction of downstream intrinsic determinants of serotonergic identity by Foxa2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxa2 expression in p3 progenitors correlates with the spatio-temporal patterns of serotonergic neuronal differentiation.
Figure 2: Temporal cross-repression between Foxa2 and Phox2b.
Figure 3: Foxa2 is required in p3 progenitors for the generation of central serotonergic neurons.
Figure 4: Conditional deletion of Foxa2 using a Nestin-Cre line (Foxa2-Nestin CKO) reduces the number of serotonergic neurons at all axial levels, but does not affect VMNs.

Similar content being viewed by others

References

  1. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    CAS  PubMed  Google Scholar 

  2. Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004).

    CAS  PubMed  Google Scholar 

  3. Cordes, S.P. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci. 2, 611–623 (2001).

    CAS  PubMed  Google Scholar 

  4. Jacob, J., Tiveron, M.C., Brunet, J.F. & Guthrie, S. Role of the target in the pathfinding of facial visceral motor axons. Mol. Cell. Neurosci. 16, 14–26 (2000).

    CAS  PubMed  Google Scholar 

  5. Jacobs, B.L. & Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992).

    CAS  PubMed  Google Scholar 

  6. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012 (2003).

    CAS  PubMed  Google Scholar 

  7. Paterson, D.S. et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. J. Am. Med. Assoc. 296, 2124–2132 (2006).

    CAS  Google Scholar 

  8. Pierce, E.T. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res. 40, 53–65 (1973).

    CAS  PubMed  Google Scholar 

  9. Covell, D.A., Jr. & Noden, D.M. Embryonic development of the chick primary trigeminal sensory-motor complex. J. Comp. Neurol. 286, 488–503 (1989).

    PubMed  Google Scholar 

  10. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sako, H., Kojima, T. & Okado, N. Immunohistochemical study on the development of serotoninergic neurons in the chick: I. Distribution of cell bodies and fibers in the brain. J. Comp. Neurol. 253, 61–78 (1986).

    CAS  PubMed  Google Scholar 

  12. Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    CAS  PubMed  Google Scholar 

  13. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signaling. Nature 398, 622–627 (1999).

    CAS  PubMed  Google Scholar 

  14. Pattyn, A., Vallstedt, A., Dias, J.M., Sander, M. & Ericson, J. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130, 4149–4159 (2003).

    CAS  PubMed  Google Scholar 

  15. Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).

    CAS  PubMed  Google Scholar 

  16. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS  PubMed  Google Scholar 

  17. Dubreuil, V., Hirsch, M.R., Pattyn, A., Brunet, J.F. & Goridis, C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127, 5191–5201 (2000).

    CAS  PubMed  Google Scholar 

  18. Pattyn, A. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat. Neurosci. 7, 589–595 (2004).

    CAS  PubMed  Google Scholar 

  19. Tiveron, M.C., Pattyn, A., Hirsch, M.R. & Brunet, J.F. Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev. Biol. 260, 46–57 (2003).

    CAS  PubMed  Google Scholar 

  20. van Doorninck, J.H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).

    CAS  PubMed  Google Scholar 

  21. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E.S. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938 (2003).

    CAS  PubMed  Google Scholar 

  24. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    CAS  PubMed  Google Scholar 

  26. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    CAS  PubMed  Google Scholar 

  27. Samad, O.A. et al. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 131, 4071–4083 (2004).

    CAS  PubMed  Google Scholar 

  28. Hallonet, M. et al. Maintenance of the specification of the anterior definitive endoderm and forebrain depends on the axial mesendoderm: a study using HNF3beta/Foxa2 conditional mutants. Dev. Biol. 243, 20–33 (2002).

    CAS  PubMed  Google Scholar 

  29. Vallet, V., Antoine, B., Chafey, P., Vandewalle, A. & Kahn, A. Overproduction of a truncated hepatocyte nuclear factor 3 protein inhibits expression of liver-specific genes in hepatoma cells. Mol. Cell. Biol. 15, 5453–5460 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wallace, J.A. An immunocytochemical study of the development of central serotoninergic neurons in the chick embryo. J. Comp. Neurol. 236, 443–453 (1985).

    CAS  PubMed  Google Scholar 

  31. Ruiz i Altaba, A., Jessell, T.M. & Roelink, H. Restrictions to floor plate induction by hedgehog and winged-helix genes in the neural tube of frog embryos. Mol. Cell. Neurosci. 6, 106–121 (1995).

    CAS  PubMed  Google Scholar 

  32. Jeong, Y. & Epstein, D.J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development 130, 3891–3902 (2003).

    CAS  PubMed  Google Scholar 

  33. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    CAS  PubMed  Google Scholar 

  34. Isaka, F. et al. Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci. 11, 2582–2588 (1999).

    CAS  PubMed  Google Scholar 

  35. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    CAS  PubMed  Google Scholar 

  36. Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    CAS  PubMed  Google Scholar 

  37. Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

    CAS  PubMed  Google Scholar 

  38. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001).

    CAS  PubMed  Google Scholar 

  39. Zhou, Q., Choi, G. & Anderson, D.J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    CAS  PubMed  Google Scholar 

  40. Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    CAS  PubMed  Google Scholar 

  41. Weinstein, D.C. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).

    CAS  PubMed  Google Scholar 

  42. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).

    CAS  PubMed  Google Scholar 

  43. Muhle, R., Trentacoste, S.V. & Rapin, I. The genetics of autism. Pediatrics 113, e472–e486 (2004).

    PubMed  Google Scholar 

  44. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–461 (2003).

    CAS  PubMed  Google Scholar 

  45. Rand, C.M., Berry-Kravis, E.M., Zhou, L., Fan, W. & Weese-Mayer, D.E. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Pediatr Res. 62, 180–182 (2007).

    CAS  PubMed  Google Scholar 

  46. Stamataki, D., Ulloa, F., Tsoni, S.V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev. 19, 626–641 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996).

    CAS  PubMed  Google Scholar 

  48. Dassule, H.R., Lewis, P., Bei, M., Maas, R. & McMahon, A.P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775–4785 (2000).

    CAS  PubMed  Google Scholar 

  49. Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    CAS  PubMed  Google Scholar 

  50. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T.M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kaestner for conditional Foxa2 mutant mice, J.-F. Brunet and C. Goridis for Phox2b mutant mice, and R. Krumlauf for Hoxb1 mutant mice. J.-F. Brunet, A. Gould, V. Ribes and C. Maurange provided comments on the manuscript. This work was funded by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

J.J. and J.B. conceived the project, designed the experiments and wrote the manuscript. J.J. and C.M. carried out the experiments. F.P. performed in ovo electroporation of Foxa2, which W.L. cloned. A.L.F., P.P. and A.G. maintained and generated mutant mouse lines. S.-L.A. constructed the conditional Foxa2 mutant line.

Corresponding authors

Correspondence to Siew-Lan Ang or James Briscoe.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 3206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, J., Ferri, A., Milton, C. et al. Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat Neurosci 10, 1433–1439 (2007). https://doi.org/10.1038/nn1985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing