Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase

Abstract

The excitability of CNS presynaptic terminals after a tetanic burst of action potentials is important for synaptic plasticity. The mechanisms that regulate excitability, however, are not well understood. Using direct recordings from the rat calyx of Held terminal, we found that a fast Na+/K+-ATPase (NKA)-mediated post-tetanic hyperpolarization (PTH) controls the probability and precision of subsequent firing. Notably, increasing the concentration of internal Ca2+ buffers or decreasing Ca2+ influx led to larger PTH amplitudes, indicating that an increase in [Ca2+]i regulates PTH via inhibition of NKAs. The characterization for the first time of a presynaptic NKA pump current, combined with immunofluorescence staining, identified the α3-NKA isoform on calyx terminals. Accordingly, the increased ability of the calyx to faithfully fire during a high-frequency train as it matures is paralleled by a larger expression of α3-NKA during development. We propose that this newly discovered Ca2+ dependence of PTH is important in the post-burst excitability of nerve terminals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTH acquires a faster onset and two decay components during developmental maturation.
Figure 2: PTH is mediated mostly by NKA.
Figure 3: PTH decay: Ih mediates the slow decay component of PTH.
Figure 4: Reduced Ca2+ influx increases PTH amplitude.
Figure 5: Intracellular Ca2+ buffering regulates PTH amplitude.
Figure 6: NKA pump currents in a presynaptic terminal.
Figure 7: α-NKA expression during development.
Figure 8: PTH increases calyx action potential latencies and EPSC delays.

Similar content being viewed by others

References

  1. Debanne, D. Information processing in the axon. Nat. Rev. Neurosci. 5, 304–316 (2004).

    Article  CAS  Google Scholar 

  2. Ames, A. CNS energy metabolism as related to function. Brain Res. Brain Res. Rev. 34, 42–68 (2000).

    Article  CAS  Google Scholar 

  3. Clarke, D.D. & Sokoloff, L. Circulation and energy metabolism of the brain. in Basic Neurochemistry (eds. Siegel, G.J., Agranoff, B.W., Albers, R.W. & Molinoff, P.B.) 645–680 (Raven, New York, 1994).

    Google Scholar 

  4. Carr, C.E., Soares, D., Parameshwaran, S. & Perney, T. Evolution and development of time coding systems. Curr. Opin. Neurobiol. 11, 727–733 (2001).

    Article  CAS  Google Scholar 

  5. Wetzel, R.K., Arystarkhova, E. & Sweadner, K.J. Cellular and subcellular specification of Na,K-ATPase α and β isoforms in the postnatal development of mouse retina. J. Neurosci. 19, 9878–9889 (1999).

    Article  CAS  Google Scholar 

  6. Schneider, J.W. et al. Tissue specificity, localization in brain, and cell-free translation of mRNA encoding the α3 isoform of Na+,K+-ATPase. Proc. Natl. Acad. Sci. USA 85, 284–288 (1988).

    Article  CAS  Google Scholar 

  7. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).

    Article  CAS  Google Scholar 

  8. de Carvalho Aguiar, P. et al. Mutations in the Na+/K+ -ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43, 169–175 (2004).

    Article  Google Scholar 

  9. Rang, H.P. & Ritchie, J.M. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183–221 (1968).

    Article  CAS  Google Scholar 

  10. Wojtowicz, J.M. & Atwood, H.L. Correlation of presynaptic and postsynaptic events during establishment of long-term facilitation at crayfish neuromuscular junction. J. Neurophysiol. 54, 220–230 (1985).

    Article  CAS  Google Scholar 

  11. Morita, K., David, G., Barrett, J.N. & Barrett, E.F. Posttetanic hyperpolarization produced by electrogenic Na+-K+ pump in lizard axon impaled near their motor terminals. J. Neurophysiol. 70, 1874–1884 (1993).

    Article  CAS  Google Scholar 

  12. Parker, D., Hill, R. & Grillner, S. Electrogenic pump and a Ca2+-dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons. J. Neurophysiol. 76, 540–553 (1996).

    Article  CAS  Google Scholar 

  13. Manookin, M.B. & Demb, J.B. Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453–464 (2006).

    Article  CAS  Google Scholar 

  14. Soleng, A.F., Chiu, K. & Raastad, M. Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz. J. Physiol. (Lond.) 552, 459–470 (2003).

    Article  CAS  Google Scholar 

  15. Wu, S.H. & Kelly, J.B. Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hear. Res. 68, 189–201 (1993).

    Article  CAS  Google Scholar 

  16. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  Google Scholar 

  17. Golding, N.L., Robertson, D. & Oertel, D. Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J. Neurosci. 15, 3138–3153 (1995).

    Article  CAS  Google Scholar 

  18. Oertel, D. The role of timing in the brainstem auditory nuclei of vertebrates. Annu. Rev. Physiol. 61, 497–519 (1999).

    Article  CAS  Google Scholar 

  19. Smith, P.H., Joris, P.X., Carney, L.H. & Yin, T.C. Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J. Comp. Neurol. 304, 387–407 (1991).

    Article  CAS  Google Scholar 

  20. Spirou, G.A., Brownell, W.E. & Zidanic, M. Recording from the cat trapezoid body and HRP labeling of globular bushy cell axons. J. Neurophysiol. 63, 1169–1190 (1990).

    Article  CAS  Google Scholar 

  21. Sommer, I., Lingenhohl, K. & Friauf, E. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp. Brain Res. 95, 223–239 (1993).

    Article  CAS  Google Scholar 

  22. Kadner, A., Kulesza, R.J., Jr & Berrebi, A.S. Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J. Neurophysiol. 95, 1499–1508 (2006).

    Article  Google Scholar 

  23. Clapham, D.E. Not so funny anymore: pacing channels are cloned. Neuron 21, 5–7 (1998).

    Article  CAS  Google Scholar 

  24. Leão, R.N., Svahn, K., Berntson, A. & Walmsley, B. Hyperpolarization-activated (Ih) currents in auditory brainstem neurons of normal and congenitally deaf mice. Eur. J. Neurosci. 22, 147–157 (2005).

    Article  Google Scholar 

  25. Cuttle, M.F., Rusznak, Z., Wong, A.Y., Owens, S. & Forsythe, I.D. Modulation of a presynaptic hyperpolarization-activated cationic current Ih at an excitatory synaptic terminal in the rat auditory brainstem. J. Physiol. (Lond.) 534, 733–744 (2001).

    Article  CAS  Google Scholar 

  26. Abel, H.J., Lee, J.C.F., Callaway, J.C. & Foehring, R.C. Relationship between intracellular calcium and afterhyperpolarization in neocortical pyramidal neurons. J. Neurophysiol. 91, 324–335 (2004).

    Article  CAS  Google Scholar 

  27. Ishikawa, T. et al. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J. Neurosci. 23, 10445–10453 (2003).

    Article  CAS  Google Scholar 

  28. Lohmann, C. & Friauf, E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367, 90–109 (1996).

    Article  CAS  Google Scholar 

  29. Felmy, F. & Schneggenburger, R. Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice. Eur. J. Neurosci. 20, 1473–1482 (2004).

    Article  Google Scholar 

  30. Kim, M.H., Korogod, N., Schneggenburger, R., Ho, W.K. & Lee, S.H. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065 (2005).

    Article  CAS  Google Scholar 

  31. Zhong, N., Beaumont, V. & Zucker, R.S. Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions. J. Neurosci. 21, 9598–9607 (2001).

    Article  CAS  Google Scholar 

  32. Iwamoto, T. Forefront of Na+/Ca2+ exchanger studies: molecular pharmacology of Na+/Ca2+ exchange inhibitors. J. Pharmacol. Sci. 96, 27–32 (2004).

    Article  CAS  Google Scholar 

  33. Hamada, K. et al. Properties of the Na+/K+ pump current in small neurons from adult rat dorsal root ganglia. Br. J. Pharmacol. 138, 1517–1527 (2003).

    Article  CAS  Google Scholar 

  34. Horisberger, J.D. & Kharoubi-Hess, S. Functional differences between alpha subunit isoforms of the rat Na/K-ATPase expressed in Xenopus oocytes. J. Physiol. (Lond.) 539, 669–680 (2002).

    Article  CAS  Google Scholar 

  35. Crambert, G.D. et al. Transport and pharmacological properties of nine different human Na/K-ATPase isozymes. J. Biol. Chem. 275, 1976–1986 (2000).

    Article  CAS  Google Scholar 

  36. Habets, R.L. & Borst, J.G.G. Post-tetanic potentiation in the rat calyx of Held synapse. J. Physiol. (Lond.) 564, 173–187 (2005).

    Article  CAS  Google Scholar 

  37. Borst, J.G.G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Phil. Trans. R. Soc. Lond. B 354, 347–355 (1999).

    Article  CAS  Google Scholar 

  38. Forsythe, I.D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M.F. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 (1998).

    Article  CAS  Google Scholar 

  39. Wang, L.Y. & Kaczmarek, L.K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394, 384–388 (1998).

    Article  CAS  Google Scholar 

  40. Forsythe, I.D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.) 479, 381–387 (1994).

    Article  Google Scholar 

  41. Blanco, G. & Mercer, R.W. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, 633–650 (1998).

    Google Scholar 

  42. Senatorov, V.V. & Hu, B. Differential Na+/K+-ATPase activity in rat lemniscal and non-lemniscal auditory thalami. J. Physiol. (Lond.) 502, 387–395 (1997).

    Article  CAS  Google Scholar 

  43. Dobretsov, M., Hastings, S.L. & Stimers, J.R. Functional Na+/K+ pump in rat dorsal root ganglia neurons. Neuroscience 93, 723–729 (1999).

    Article  CAS  Google Scholar 

  44. Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28, 422–428 (2005).

    Article  CAS  Google Scholar 

  45. Ishii, T. & Takeyasu, K. The C-terminal 165 amino acids of the plasma membrane Ca2+-ATPase confer Ca2+/calmodulin sensitivity on the Na+/K+-ATPase alpha-subunit. EMBO J. 14, 58–67 (1995).

    Article  CAS  Google Scholar 

  46. Borst, J.G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 89, 825–840 (1995).

    Article  Google Scholar 

  47. Korogod, N., Lou, X. & Schneggenburger, R. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J. Neurosci. 25, 5127–5137 (2005).

    Article  CAS  Google Scholar 

  48. Leão, R.M. et al. Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high-fidelity synapse. J. Neurosci. 25, 3724–3738 (2005).

    Article  Google Scholar 

  49. Delaney, K.R. & Tank, D.W. A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J. Neurosci. 14, 5885–5902 (1994).

    Article  CAS  Google Scholar 

  50. Verdru, P., De Greef, C., Mertens, L., Carmeliet, E. & Callewaert, G. Na+-Ca2+ exchange in rat dorsal root ganglion neurons. J. Neurophysiol. 77, 484–490 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. McCleskey and D. Gadsby for insightful discussions, and J. Adelman, C. Jahr, J. Maylie and L. Trussell for comments on the manuscript. This work was supported by a US National Institute of Deafness and Communication Disorders grant (DC04274, H.v.G.), an American Heart Association postdoctoral grant (J.H.K.) and a US National Institute of Diabetes and Digestive and Kidney Diseases grant (DK067248, M.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.H.K. performed all experiments, J.H.K. and H.v.G. performed data analysis and J.H.K., I.S., M.D. and H.v.G. wrote the paper.

Corresponding author

Correspondence to Henrique von Gersdorff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PTH induced by high-frequency trains in the calyx of Held has two kinetic components. (PDF 279 kb)

Supplementary Fig. 2

The fast decay of PTH: mediated by a depolarizing K+current or NKA inactivation. (PDF 149 kb)

Supplementary Fig. 3

AP failures and recovery time course of latencies during PTH. (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Sizov, I., Dobretsov, M. et al. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nat Neurosci 10, 196–205 (2007). https://doi.org/10.1038/nn1839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing