Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity

Abstract

The suprachiasmatic nucleus (SCN) drives circadian rhythms of locomotor behavior by releasing factors that act on receptor sites near the third ventricle. Here we show that cardiotrophin-like cytokine (CLC) satisfies multiple criteria for a circadian regulator of locomotor activity. In the mouse, CLC is expressed in a subpopulation of SCN vasopressin neurons with a circadian rhythm that peaks during the daily period of locomotor quiescence. CLC receptors flank the third ventricle, and acute infusion of CLC into the third ventricle produced a transient blockade of locomotor activity without affecting the circadian clock. The hypothalamic infusion of neutralizing antibodies to the CLC receptor produced extra daily locomotor activity at the time when CLC is maximally expressed. These results suggest that CLC is probably an SCN output signal important for shaping daily rhythms of behavior; moreover, they indicate an unexpected role for a cytokine in adult brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exclusive expression of Clc mRNA in a subpopulation of SCN vasopressin neurons.
Figure 2: Clc-expressing neurons in the SCN express core circadian-clock components.
Figure 3: Circadian regulation of Clc mRNA in the SCN.
Figure 4: The Clc gene is probably a direct molecular output of the SCN circadian clock.
Figure 5: Expression of CLC receptor components around the third ventricle in the adult mouse hypothalamus.
Figure 6: Administration of CLC into the third ventricle of hamsters rapidly and reversibly inhibits locomotor activity without affecting circadian clock function.
Figure 7: Chronic blockade of periventricular GP130 signaling leads to a reversible increase in locomotor activity during the circadian rest period.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. King, D.P. & Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742 (2000).

    Article  CAS  Google Scholar 

  2. Pittendrigh, C.S. & Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. A 106, 223–252 (1976).

    Article  Google Scholar 

  3. Naylor, E. et al. Effect of aging on sleep in the golden hamster. Sleep 21, 687–696 (1998).

    Article  CAS  Google Scholar 

  4. Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001).

    Article  CAS  Google Scholar 

  5. LeSauter, J., Romero, P., Cascio, M. & Silver, R. Attachment site of grafted SCN influences precision of restored circadian rhythm. J. Biol. Rhythms 12, 327–338 (1997).

    Article  CAS  Google Scholar 

  6. Silver, R., LeSauter, J., Tresco, P.A. & Lehman, M.N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813 (1996).

    Article  CAS  Google Scholar 

  7. Vogelbaum, M.A. & Menaker, M. Temporal chimeras produced by hypothalamic transplants. J. Neurosci. 12, 3619–3627 (1992).

    Article  CAS  Google Scholar 

  8. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002).

    Article  CAS  Google Scholar 

  9. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  10. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article  CAS  Google Scholar 

  11. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  Google Scholar 

  12. Sujino, M. et al. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 13, 664–668 (2003).

    Article  CAS  Google Scholar 

  13. Davis, F.C. & Menaker, M. Hamsters through time's window: temporal structure of hamster locomotor rhythmicity. Am. J. Physiol. 239, R149–R155 (1980).

    CAS  PubMed  Google Scholar 

  14. Cheng, M.Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002).

    Article  CAS  Google Scholar 

  15. Kramer, A., Yang, F.-C., Kraves, S. & Weitz, C.J. A screen for secreted factors of the suprachiasmatic nucleus. Methods Enzymol. 393, 645–663 (2005).

    Article  CAS  Google Scholar 

  16. Vallières, L. & Rivest, S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J. Neurochem. 69, 1668–1683 (1997).

    Article  Google Scholar 

  17. Shi, Y. et al. Computational EST database analysis identifies a novel member of the neuropoietic cytokine family. Biochem. Biophys. Res. Commun. 262, 132–138 (1999).

    Article  CAS  Google Scholar 

  18. Senaldi, G. et al. Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc. Natl. Acad. Sci. USA 96, 11458–11463 (1999).

    Article  CAS  Google Scholar 

  19. Muller-Newen, G. The cytokine receptor gp130: faithfully promiscuous. Sci. STKE 2003, PE40 (2003).

    PubMed  Google Scholar 

  20. Derouet, D. et al. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc. Natl. Acad. Sci. USA 101, 4827–4832 (2004).

    Article  CAS  Google Scholar 

  21. Fukada, T. et al. Signaling through Gp130: toward a general scenario of cytokine action. Growth Factors 17, 81–91 (1999).

    Article  CAS  Google Scholar 

  22. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  Google Scholar 

  23. Bunger, M.K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    Article  CAS  Google Scholar 

  24. Yoo, S.H. et al. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. USA 102, 2608–2613 (2005).

    Article  CAS  Google Scholar 

  25. Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544 (1989).

    Article  CAS  Google Scholar 

  26. Wang, Z., Ren, S.G. & Melmed, S. Hypothalamic and pituitary leukemia inhibitory factor gene expression in vivo: a novel endotoxin-inducible neuro-endocrine interface. Endocrinology 137, 2947–2953 (1996).

    Article  CAS  Google Scholar 

  27. Watts, A.G. & Swanson, L.W. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258, 230–252 (1987).

    Article  CAS  Google Scholar 

  28. Schwartz, W.J., Gross, R.A. & Morton, M.T. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc. Natl. Acad. Sci. USA 84, 1694–1698 (1987).

    Article  CAS  Google Scholar 

  29. Schobitz, B., de Kloet, E.R., Sutanto, W. & Holsboer, F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 5, 1426–1435 (1993).

    Article  CAS  Google Scholar 

  30. Auernhammer, C.J. & Melmed, S. Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. Endocrinology 140, 1559–1566 (1999).

    Article  CAS  Google Scholar 

  31. DeChiara, T.M. et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313–322 (1995).

    Article  CAS  Google Scholar 

  32. Ware, C.B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299 (1995).

    CAS  PubMed  Google Scholar 

  33. Yoshida, K. et al. (1996). Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl. Acad. Sci. USA 93, 407–411 (1996).

    Article  CAS  Google Scholar 

  34. Rhee, K.D., Goureau, O., Chen, S. & Yang, X.J. Cytokine-induced activation of signal transducer and activator of transcription in photoreceptor precursors regulates rod differentiation in the developing mouse retina. J. Neurosci. 24, 9779–9788 (2004).

    Article  CAS  Google Scholar 

  35. Palmqvist, P., Persson, E., Conaway, H.H. & Lerner, U.H. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J. Immunol. 169, 3353–3362 (2002).

    Article  CAS  Google Scholar 

  36. Elson, G.C. et al. CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat. Neurosci. 3, 867–872 (2000).

    Article  CAS  Google Scholar 

  37. Watts, A.G., Swanson, L.W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).

    Article  CAS  Google Scholar 

  38. Chesnokova, V. & Melmed, S. Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology 143, 1571–1574 (2002).

    Article  CAS  Google Scholar 

  39. Krueger, J.M. et al. The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci. 933, 211–221 (2001).

    Article  CAS  Google Scholar 

  40. Rusak, B. The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J. Comp. Physiol. A 118, 145–164 (1977).

    Article  Google Scholar 

  41. Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J. & Herzog, E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    Article  CAS  Google Scholar 

  42. Moore, R.Y., Speh, J.C. & Leak, R.K. Suprachiasmatic nucleus organization. Cell Tissue Res. 309, 89–98 (2002).

    Article  CAS  Google Scholar 

  43. Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862–868 (2004).

    Article  CAS  Google Scholar 

  44. Grima, B., Chelot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873 (2004).

    Article  CAS  Google Scholar 

  45. Tautz, D. Segmentation. Dev. Cell 7, 301–312 (2004).

    Article  CAS  Google Scholar 

  46. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Liu for technical assistance, L. Zakhary for advice on in situ hybridization and D. Knutti and K.-F. Storch for comments on the manuscript. Confocal images were obtained at the Harvard Center for Neurodegeneration and Repair. This work was supported by the US National Institute of Neurological Disorders and Stroke (C.J.W.), a Howard Hughes Medical Institute predoctoral fellowship (S.K.) and a Stuart H.Q. and Victoria Quan Fellowhip (S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J Weitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In situ hybridization to coronal mouse brain sections showing constitutive expression of clc mRNA in the anterodorsal thalamus [Franklin, K. B. & Paxinos, G. The mouse brain in stereotaxic coordinates. (Academic Press, 1997)] over a circadian cycle. (PDF 152 kb)

Supplementary Fig. 2

Cells expressing clc mRNA are located in the dorsal division of the mouse SCN and distributed throughout its rostrocaudal axis. (PDF 114 kb)

Supplementary Fig. 3

Induction of clc mRNA by light in the mouse SCN. (PDF 111 kb)

Supplementary Fig. 4

Blockade of locomotor activity by activation of hypothalamic CLC receptors does not reflect a generalized inhibition of behavior. (PDF 79 kb)

Supplementary Methods (PDF 124 kb)

Supplementary Note (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraves, S., Weitz, C. A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9, 212–219 (2006). https://doi.org/10.1038/nn1633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing