Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural correlates of binocular rivalry in the human lateral geniculate nucleus

Abstract

When dissimilar images are presented to the two eyes, they compete for perceptual dominance so that only one image is visible at a time while the other one is suppressed. Neural correlates of such binocular rivalry have been found at multiple stages of visual processing, including striate and extrastriate visual cortex. However, little is known about the role of subcortical processing during binocular rivalry. Here we used fMRI to measure neural activity in the human LGN while subjects viewed contrast-modulated gratings presented dichoptically. Neural activity in the LGN correlated strongly with the subjects' reported percepts, such that activity increased when a high-contrast grating was perceived and decreased when a low-contrast grating was perceived. Our results provide evidence for a functional role of the LGN in binocular rivalry and suggest that the LGN, traditionally viewed as the gateway to the visual cortex, may be an early gatekeeper of visual awareness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and stimuli.
Figure 2: fMRI signals during binocular rivalry and physical stimulus alternations in the LGN and V1 (group analysis).
Figure 3: fMRI signals during binocular rivalry and physical stimulus alternations in the LGN and V1 (single subjects).
Figure 4: Effect of perceptual duration on fMRI signals.
Figure 5: Comparison of fMRI signals during binocular rivalry and physical stimulus alternations in the LGN and V1.

Similar content being viewed by others

References

  1. Blake, R. A neural theory of binocular rivalry. Psychol. Rev. 96, 145–167 (1989).

    Article  CAS  Google Scholar 

  2. Levelt, W.J. Binocular brightness averaging and contour information. Br. J. Psychol. 56, 1–13 (1965).

    Article  CAS  Google Scholar 

  3. Mueller, T.J. & Blake, R. A fresh look at the temporal dynamics of binocular rivalry. Biol. Cybern. 61, 223–232 (1989).

    Article  CAS  Google Scholar 

  4. Crick, F. & Koch, C. Consciousness and neuroscience. Cereb. Cortex 8, 97–107 (1998).

    Article  CAS  Google Scholar 

  5. Sheinberg, D.L. & Logothetis, N.K. The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94, 3408–3413 (1997).

    Article  CAS  Google Scholar 

  6. Logothetis, N.K. & Schall, J.D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    Article  CAS  Google Scholar 

  7. Leopold, D.A. & Logothetis, N.K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).

    Article  CAS  Google Scholar 

  8. Lehky, S.R. & Blake, R. Organization of binocular pathways: modeling and data related to rivalry. Neural Comput. 3, 44–53 (1991).

    Article  Google Scholar 

  9. Polonsky, A., Blake, R., Braun, J. & Heeger, D.J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

    Article  CAS  Google Scholar 

  10. Tong, F. & Engel, S.A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    Article  CAS  Google Scholar 

  11. Sherman, S.M. & Guillery, R.W. Exploring the Thalamus (Academic Press, San Diego, 2001).

    Google Scholar 

  12. Lehky, S.R. An astable multivibrator model of binocular rivalry. Perception 17, 215–228 (1988).

    Article  CAS  Google Scholar 

  13. Lehky, S.R. & Maunsell, J.H. No binocular rivalry in the LGN of alert macaque monkeys. Vision Res. 36, 1225–1234 (1996).

    Article  CAS  Google Scholar 

  14. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  Google Scholar 

  15. Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. J. Neurophysiol. 91, 438–448 (2004).

    Article  Google Scholar 

  16. Schneider, K.A. & Kastner, S. Visual responses of the human superior colliculus: a high-resolution fMRI study. J. Neurophysiol. 94, 2491–2503 (2005).

    Article  Google Scholar 

  17. O'Connor, D.H., Fukui, M.M., Pinsk, M.A. & Kastner, S. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5, 1203–1209 (2002).

    Article  CAS  Google Scholar 

  18. Schneider, K.A., Richter, M.C. & Kastner, S. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J. Neurosci. 24, 8975–8985 (2004).

    Article  CAS  Google Scholar 

  19. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

  20. Lee, S.H. & Blake, R. V1 activity is reduced during binocular rivalry. J. Vis. 2, 618–626 (2002).

    Article  Google Scholar 

  21. Lee, S.H., Blake, R. & Heeger, D.J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005).

    Article  CAS  Google Scholar 

  22. Rodieck, R.W. & Dreher, B. Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey. Exp. Brain Res. 35, 465–477 (1979).

    Article  CAS  Google Scholar 

  23. Marrocco, R.T. & McClurkin, J.W. Binocular interaction in the lateral geniculate nucleus of the monkey. Brain Res. 168, 633–637 (1979).

    Article  CAS  Google Scholar 

  24. Schroeder, C.E., Tenke, C.E., Arezzo, J.C. & Vaughan, H.G., Jr. Binocularity in the lateral geniculate nucleus of the alert macaque. Brain Res. 521, 303–310 (1990).

    Article  CAS  Google Scholar 

  25. Sengpiel, F., Blakemore, C. & Harrad, R. Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry. Vision Res. 35, 179–195 (1995).

    Article  CAS  Google Scholar 

  26. Pape, H.C. & Eysel, U.T. Binocular interactions in the lateral geniculate nucleus of the cat: GABAergic inhibition reduced by dominant afferent activity. Exp. Brain Res. 61, 265–271 (1986).

    Article  CAS  Google Scholar 

  27. Sanderson, K.J., Bishop, P.O. & Darian-Smith, I. The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res. 13, 178–207 (1971).

    CAS  PubMed  Google Scholar 

  28. Schmielau, F. & Singer, W. The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res. 120, 354–361 (1977).

    Article  CAS  Google Scholar 

  29. Singer, W. Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 18, 165–170 (1970).

    Article  CAS  Google Scholar 

  30. Varela, F.J. & Singer, W. Neuronal dynamics in the visual corticothalamic pathway revealed through binocular rivalry. Exp. Brain Res. 66, 10–20 (1987).

    Article  CAS  Google Scholar 

  31. Livingstone, M.S. & Hubel, D.H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).

    Article  CAS  Google Scholar 

  32. Lund, J.S. & Boothe, R.G. Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey. J. Comp. Neurol. 159, 305–334 (1975).

    Article  Google Scholar 

  33. Guillery, R.W., Feig, S.L. & Lozsadi, D.A. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 21, 28–32 (1998).

    Article  CAS  Google Scholar 

  34. Logothetis, N.K., Guggenberger, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nat. Neurosci. 2, 555–562 (1999).

    Article  CAS  Google Scholar 

  35. Crick, F. & Koch, C. Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995).

    Article  CAS  Google Scholar 

  36. Lumer, E.D., Friston, K.J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    Article  CAS  Google Scholar 

  37. Cohen, M.S. Parametric analysis of fMRI data using linear systems methods. Neuroimage 6, 93–103 (1997).

    Article  CAS  Google Scholar 

  38. Friston, K.J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  39. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Weiner for help with manuscript preparation. This study was supported by NIH grants R01MH-64043, P50MH-62196 and T32 MH065214. K.W. was also supported by the German National Academic Foundation and the German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Kastner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Checkerboard localizer. (PDF 95 kb)

Supplementary Fig. 2

Behavioral results. (PDF 171 kb)

Supplementary Fig. 3

fMRI signal amplitudes in LGN and V1 during rivalry (red) and physical alternations (black). (PDF 151 kb)

Supplementary Table 1 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, K., Schneider, K. & Kastner, S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat Neurosci 8, 1595–1602 (2005). https://doi.org/10.1038/nn1554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing