Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sleep states alter activity of suprachiasmatic nucleus neurons

Abstract

The timing of sleep and wakefulness in mammals is governed by a sleep homeostatic process and by the circadian clock of the suprachiasmatic nucleus (SCN), which has a molecular basis for rhythm generation. By combining SCN electrical activity recordings with electroencephalogram (EEG) recordings in the same animal (the Wistar rat), we discovered that changes in vigilance states are paralleled by strong changes in SCN electrophysiological activity. During rapid eye movement (REM) sleep, neuronal activity in the SCN was elevated, and during non-REM (NREM) sleep, it was lowered. We also carried out selective sleep deprivation experiments to confirm that changes in SCN electrical activity are caused by changes in vigilance state. Our results indicate that the 24-hour pattern in electrical activity that is controlled by the molecular machinery of the SCN is substantially modified by afferent information from the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vigilance states, slow-wave activity and SCN neuronal activity.
Figure 2: Suprachiasmatic nuclei neuronal activity.
Figure 3: Correlation between SCN neuronal activity and EEG power density.
Figure 4: Vigilance state transitions.
Figure 5: Deprivation studies.

Similar content being viewed by others

References

  1. Crick, F. & Mitchison, G. The function of dream sleep. Nature 304, 111–114 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Krueger, J.M. & Obál, F. A neuronal group theory of sleep function. J. Sleep Res. 2, 63–69 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Benington, J.H. & Heller, H.C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360.

  4. Jouvet, M. Paradoxical sleep as a programming system. J. Sleep Res. 7 (Suppl. 1) 1–5 (1998).

    Article  PubMed  Google Scholar 

  5. Stickgold, R., Hobson, J.A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Borbély, A.A. & Achermann, P. Sleep homeostasis and models of sleep regulation. in Principles and Practice of Sleep Medicine 3rd edn. (eds. Kryger, M.H., Roth, T. & Dement, W.C.) 377–390 (WB Saunders, Philadelphia, 2000).

    Google Scholar 

  7. Tobler, I. & Borbély, A.A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Dijk, D.J., Beersma, D.G.M. & Daan, S. EEG power density during nap sleep: reflection of an hourglass measuring the duration of wakefulness. J. Biol. Rhythms 3, 207–219 (1987).

    Article  Google Scholar 

  9. Lancel, M., Van Riezen, H. & Glatt, A. Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Res. 548, 206–214 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Strijkstra, A.M. & Daan, S. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am. J. Physiol. 275, R1110–R1117 (1998).

    CAS  PubMed  Google Scholar 

  11. Huber, R., Deboer, T. & Tobler, I. Effects of sleep deprivation on sleep and EEG in three mouse strains: empirical data and simulations. Brain Res. 857, 8–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Deboer, T. & Tobler, I. Sleep regulation in the Djungarian hamster: comparison of the dynamics leading to the slow-wave activity increase after sleep deprivation and daily torpor. Sleep 26, 567–572 (2003).

    Article  PubMed  Google Scholar 

  13. Takahashi, J.S., Turek, F.W. & Moore, R.Y. Handbook of Behavioral Neurobiology. 12 (Kluwer Academic/Plenum, New York, 2001).

    Book  Google Scholar 

  14. King, D.P. & Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Albus, H et al. Crypotochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr. Biol. 12, 1130–1133 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Herzog, E.D., Takahashi, J.S. & Block, G.D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci. 1, 708–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, C., Weaver, D.R., Strogatz, S.H. & Reppert, S.M. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91, 855–860 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura, W., Honma, S., Shirakawa, T. & Honma, K.I. Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat. Neurosci. 5, 399–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, W.J., Gross, R.A. & Morton, M.T. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc. Natl. Acad. Sci. USA 84, 1694–1698 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meijer, J.H., Schaap, J., Watanabe, K. & Albus, H. Multiunit activity recordings in the suprachiasmatic nucleus: in vivo versus in vitro models. Brain Res. 753, 322–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Meijer, J.H., Watanabe, K., Schaap, J., Albus, H. & Détári, L. Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving animals. J. Neurosci. 18, 9078–9087 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daan, S., Beersma, D.G.M. & Borbély, A.A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R178 (1984).

    CAS  PubMed  Google Scholar 

  23. Edgar, D.M., Dement, W.C. & Fuller, C.A. Effect of SCN-lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Achermann, P. & Borbély, A.A. Simulation of daytime vigilance by the additional interaction of a homeostatic and a circadian process. Biol. Cybern. 71, 115–121 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Moses, J.M., Johnson, L.C., Naitoh, P. & Lubin, A. Sleep stage deprivation and total sleep loss: effects on sleep behavior. Psychophysiology 12, 141–146 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Borbély, A.A., Tobler, I. & Hanagasioglu, M. Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav. Brain Res. 14,171–182 (1984).

    Article  PubMed  Google Scholar 

  27. Dijk, D.J., Beersma, D.G.M., Daan, S., Bloem, G.M. & Van den Hoofdakker, R.H. Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur. Arch. Psychiatry Neurol. Sci. 236, 323–328 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Benington, J.H. & Heller, H.C. REM-sleep timing is controlled homeostatically by accumulation of REM-sleep propensity in non-REM sleep. Am. J. Physiol. 266, R1992–R2000 (1994).

    CAS  PubMed  Google Scholar 

  29. Endo, T., Schwierin, B., Borbély, A.A. & Tobler, I. Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res. 66, 97–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Palchykova, S., Deboer, T. & Tobler, I. Selective sleep deprivation after daily torpor in the Djungarian hamster. J. Sleep Res. 11 313–319 (2002).

    Article  PubMed  Google Scholar 

  31. Dijk, D.J. EEG slow waves and sleep spindles: windows on the sleeping brain. Behav. Brain Res. 69, 109–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Campbell, S. & Zulley, J. Evidence for circadian influence on human slow wave sleep during daytime sleep episodes. Psychophysiology 26, 580–585 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Dijk, D.J. & Czeisler, C.A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bina, K.G., Rusak, B. & Semba, K. Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J. Comp. Neurol. 335, 295–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. McCarley, R.W. & Massaquoi, S.G. Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J. Sleep Res. 1, 132–137 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Moore, R.Y., Halaris, A.E. & Jones, B.E. Serotonin neurons of the midbrain raphe: ascending projections. J. Comp. Neurol. 180, 417–438 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Mistlberger, R.E., Bergmann, B.M., Waldenar, W. & Rechtschaffen, A. Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei lesioned rats. Sleep 6, 217–233 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Tobler, I., Borbély, A.A. & Groos, G. The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci. Lett. 42, 49–54 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Trachsel, L., Edgar, D.M., Seidel, W.F., Heller, H.C. & Dement, W.C. Sleep homeostasis in suprachiasmatic nuclei lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res. 589, 253–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Dijk, D.J., Beersma, D.G.M. & Daan, S. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis. Am. J. Physiol. 156, R106–R111 (1989).

    Google Scholar 

  41. Antle, M.C. & Mistlberger, R.E. Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J. Neurosci. 20, 9326–9332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wisor, J.P. et al. A role for cryptochromes in sleep regulation. BMC Neurosci. 3, 20 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Franken, P., Dijk, D.J., Tobler, I. & Borbély, A.A. Sleep deprivation in the rat: effects on electroencephalogram power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 261, R198–R208 (1991).

    CAS  PubMed  Google Scholar 

  44. Deboer, T., Franken, P. & Tobler, I. Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. J. Comp. Physiol. A 174,145–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Deboer, T. & Tobler, I. Vigilance state episodes and cortical temperature in the Djungarian hamster: the influence of photoperiod and ambient temperature. Pflügers Arch. 433, 23–237 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank W.J. Schwartz, E.R. de Kloet and P. Maquet for critical reading of the manuscript, and J.A.M. Janse and H. Duindam for technical support. This research was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek grant 425-204-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna H Meijer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deboer, T., Vansteensel, M., Détári, L. et al. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6, 1086–1090 (2003). https://doi.org/10.1038/nn1122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing