Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emerging mechanisms of disrupted cellular signaling in brain ischemia

Abstract

Recent findings have provided insights into pathogenic mechanism(s) that may complement and add to the traditional glutamatergic mechanisms to which ischemic brain injury is ascribed. The discovery of mechanisms leading to ionic imbalance and signaling cascades that mediate cross-talk between redundant pathways of cell death, as well as mechanisms that operate downstream of, upstream of and in parallel with excitotoxicity, has spurred new research into therapeutics ranging from proof of concept in animals to human clinical trials. This Perspective presents an integrated consideration of new molecular pathogenic mechanisms underlying ischemic damage in the brain, and how our combined knowledge of these mechanisms and our existing knowledge of excitotoxicity may establish new targets for therapy, by allowing clearer boundaries on what might be expected of a given intervention, and may yield advances that will benefit patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy of perturbing protein-protein interactions involving the postsynaptic scaffolding protein PSD-95.
Figure 2: Possible involvement of NMDARs, TRPM2 and TRPM7 channels in anoxic neuronal death.

Similar content being viewed by others

References

  1. Guo, S. & Lo, E.H. Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40, S4–S7 (2009).

    Article  Google Scholar 

  2. Lau, A. & Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460, 525–542 (2010).

    Article  CAS  Google Scholar 

  3. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  Google Scholar 

  4. McShane, R., Areosa Sastre, A. & Minakaran, N. Memantine for dementia. Cochrane Database Syst. Rev. 19, CD003154 (2006).

  5. Hardingham, G.E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  Google Scholar 

  6. Petralia, R.S. et al. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167, 68–87 (2010).

    Article  CAS  Google Scholar 

  7. Hardingham, G.E. Pro-survival signalling from the NMDA receptor. Biochem. Soc. Trans. 34, 936–938 (2006).

    Article  CAS  Google Scholar 

  8. Zhang, S.J. et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 5, e1000604 (2009).

    Article  Google Scholar 

  9. Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  Google Scholar 

  10. Ivanov, A. et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J. Physiol. (Lond.) 572, 789–798 (2006).

    Article  CAS  Google Scholar 

  11. Xia, P., Chen, H.S., Zhang, D. & Lipton, S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 30, 11246–11250 (2010).

    Article  CAS  Google Scholar 

  12. Liu, Y. et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27, 2846–2857 (2007).

    Article  CAS  Google Scholar 

  13. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  14. Kornau, H.C., Schenker, L.T., Kennedy, M.B. & Seeburg, P.H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  Google Scholar 

  15. Sheng, M. & Pak, D.T. Glutamate receptor anchoring proteins and the molecular organization of excitatory synapses. Ann. N.Y. Acad. Sci. 868, 483–493 (1999).

    Article  CAS  Google Scholar 

  16. Christopherson, K.S., Hillier, B.J., Lim, W.A. & Bredt, D.S. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem. 274, 27467–27473 (1999).

    Article  CAS  Google Scholar 

  17. Sattler, R. et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848 (1999).

    Article  CAS  Google Scholar 

  18. Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846–850 (2002).

    Article  CAS  Google Scholar 

  19. Soriano, F.X. et al. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J. Neurosci. 28, 10696–10710 (2008).

    Article  CAS  Google Scholar 

  20. Tu, W. et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140, 222–234 (2010).

    Article  CAS  Google Scholar 

  21. Ning, K. et al. Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J. Neurosci. 24, 4052–4060 (2004).

    Article  CAS  Google Scholar 

  22. Besancon, E., Guo, S., Lok, J., Tymianski, M. & Lo, E.H. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol. Sci. 29, 268–275 (2008).

    Article  CAS  Google Scholar 

  23. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    Article  CAS  Google Scholar 

  24. Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).

    Article  CAS  Google Scholar 

  25. Kaneko, S. et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66–76 (2006).

    Article  CAS  Google Scholar 

  26. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    Article  CAS  Google Scholar 

  27. McNulty, S. & Fonfria, E. The role of TRPM channels in cell death. Pflugers Arch. 451, 235–242 (2005).

    Article  CAS  Google Scholar 

  28. Xie, Y.F., Macdonald, J.F. & Jackson, M.F. TRPM2, calcium and neurodegenerative diseases. Int. J. Physiol. Pathophysiol. Pharmacol. 2, 95–103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. MacDonald, J.F., Xiong, Z.G. & Jackson, M.F. Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci. 29, 75–81 (2006).

    Article  CAS  Google Scholar 

  30. Perraud, A.L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    Article  CAS  Google Scholar 

  31. Fonfria, E. et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J. Recept. Signal Transduct. Res. 26, 179–198 (2006).

    Article  CAS  Google Scholar 

  32. Olah, M.E. et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J. Physiol. (Lond.) 587, 965–979 (2009).

    Article  CAS  Google Scholar 

  33. Jia, J. et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J. Cereb. Blood Flow Metab. published online, doi:10.1038/jcbfm.2011.77 (18 May 2011).

    Article  CAS  Google Scholar 

  34. Nadler, M.J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  Google Scholar 

  35. Wei, W.L. et al. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc. Natl. Acad. Sci. USA 104, 16323–16328 (2007).

    Article  CAS  Google Scholar 

  36. Silver, I.A. & Erecinska, M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J. Gen. Physiol. 95, 837–866 (1990).

    Article  CAS  Google Scholar 

  37. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008).

    Article  CAS  Google Scholar 

  38. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    Article  CAS  Google Scholar 

  39. Giffard, R.G., Monyer, H., Christine, C.W. & Choi, D.W. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506, 339–342 (1990).

    Article  CAS  Google Scholar 

  40. Krishtal, O. The ASICs: signaling molecules? Modulators? Trends Neurosci. 26, 477–483 (2003).

    Article  CAS  Google Scholar 

  41. Askwith, C.C., Wemmie, J.A., Price, M.P., Rokhlina, T. & Welsh, M.J. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279, 18296–18305 (2004).

    Article  CAS  Google Scholar 

  42. Allen, N.J. & Attwell, D. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals. J. Physiol. (Lond.) 543, 521–529 (2002).

    Article  CAS  Google Scholar 

  43. Immke, D.C. & McCleskey, E.W. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4, 869–870 (2001).

    Article  CAS  Google Scholar 

  44. Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 101, 6752–6757 (2004).

    Article  CAS  Google Scholar 

  45. Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    Article  CAS  Google Scholar 

  46. Yen, M.R. & Saier, M.H. Jr. Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog. Biophys. Mol. Biol. 94, 5–14 (2007).

    Article  CAS  Google Scholar 

  47. MacVicar, B.A. & Thompson, R.J. Non-junction functions of pannexin-1 channels. Trends Neurosci. 33, 93–102 (2010).

    Article  CAS  Google Scholar 

  48. Thompson, R.J., Zhou, N. & MacVicar, B.A. Ischemia opens neuronal gap junction hemichannels. Science 312, 924–927 (2006).

    Article  CAS  Google Scholar 

  49. Contreras, J.E. et al. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev. 47, 290–303 (2004).

    Article  CAS  Google Scholar 

  50. Andrade-Rozental, A.F. et al. Gap junctions: the “kiss of death” and the “kiss of life”. Brain Res. Brain Res. Rev. 32, 308–315 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tymianski.

Ethics declarations

Competing interests

M.T. is president and chief executive officer of NoNO Inc., a biotechnology company dedicated to the translation of new therapies discovered in the author's and collaborators' academic laboratories to human clinical trials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tymianski, M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci 14, 1369–1373 (2011). https://doi.org/10.1038/nn.2951

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing