Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution

This article has been updated

Abstract

Understanding how the subcellular fate of newly synthesized AMPA receptors (AMPARs) is controlled is important for elucidating the mechanisms of neuronal function. We examined the effect of increased synthesis of AMPAR subunits on their subcellular distribution in rat hippocampal neurons. Virally expressed AMPAR subunits (GluR1 or GluR2) accumulated in cell bodies and replaced endogenous dendritic AMPAR with little effect on total dendritic amounts and caused no change in synaptic transmission. Coexpressing stargazin (STG) or mimicking GluR1 phosphorylation enhanced dendritic GluR1 levels by protecting GluR1 from lysosomal degradation. However, STG interaction or GluR1 phosphorylation did not increase surface or synaptic GluR1 levels. Unlike GluR1, STG did not protect GluR2 from lysosomal degradation or increase dendritic GluR2 levels. In general, AMPAR surface levels, and not intracellular amounts, correlated strongly with synaptic levels. Our results suggest that AMPAR surface expression, but not its intracellular production or accumulation, is critical for regulating synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overproduction of GluR1 leads to accumulation in cell bodies, not in dendrites.
Figure 2: Phosphorylation of GluR1 allows it to accumulate intracellularly in dendrites.
Figure 3: STG interaction allows dendritic accumulation of GluR1 but does not lead to increases in GluR1 surface levels.
Figure 4: An accumulation of dendritic GluR1 does not lead to changes in synaptic incorporation or synaptic strength.
Figure 5: Dendritic levels of GluR2 are more tightly controlled than dendritic levels of GluR1.
Figure 6: Surface GluR2 levels correlate with synaptic changes in AMPAR content but total dendritic GluR2 levels do not.
Figure 7: Endogenous GluR2/3 heteromers are more likely to be targeted for lysosomal degradation than endogenous GluR1/2 heteromers.

Similar content being viewed by others

Change history

  • 09 July 2009

    In the version of the Online Methods originally posted online, R1u in equation (1) should be R1, and R2u in equation (2) should be R2. In the text below equation (3), R1u should be R1. These errors have been corrected as of 9 July 2009.

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  2. Terasaki, M., Slater, N.T., Fein, A., Schmidek, A. & Reese, T.S. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 91, 7510–7514 (1994).

    Article  CAS  Google Scholar 

  3. Aridor, M., Guzik, A.K., Bielli, A. & Fish, K.N. Endoplasmic reticulum export site formation and function in dendrites. J. Neurosci. 24, 3770–3776 (2004).

    Article  CAS  Google Scholar 

  4. Nicoll, R.A., Tomita, S. & Bredt, D.S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    Article  CAS  Google Scholar 

  5. Ziff, E.B. TARPs and the AMPA receptor trafficking paradox. Neuron 53, 627–633 (2007).

    Article  CAS  Google Scholar 

  6. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  Google Scholar 

  7. Vandenberghe, W., Nicoll, R.A. & Bredt, D.S. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J. Neurosci. 25, 1095–1102 (2005).

    Article  CAS  Google Scholar 

  8. Wenthold, R.J., Petralia, R.S., Blahos, J. II & Niedzielski, A.S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  Google Scholar 

  9. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  10. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  11. Patrick, G.N., Bingol, B., Weld, H.A. & Schuman, E.M. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13, 2073–2081 (2003).

    Article  CAS  Google Scholar 

  12. Lee, S.H., Simonetta, A. & Sheng, M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221–236 (2004).

    Article  CAS  Google Scholar 

  13. Nayak, A., Zastrow, D.J., Lickteig, R., Zahniser, N.R. & Browning, M.D. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683 (1998).

    Article  CAS  Google Scholar 

  14. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–253 (2004).

    Article  CAS  Google Scholar 

  15. Smith, W.B., Starck, S.R., Roberts, R.W. & Schuman, E.M. Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45, 765–779 (2005).

    Article  CAS  Google Scholar 

  16. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  Google Scholar 

  17. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  Google Scholar 

  18. Chen, N. & Napoli, J.L. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J. 22, 236–245 (2008).

    Article  CAS  Google Scholar 

  19. Thiagarajan, T.C., Lindskog, M. & Tsien, R.W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  Google Scholar 

  20. Sutton, M.A. & Schuman, E.M. Dendritic protein synthesis, synaptic plasticity and memory. Cell 127, 49–58 (2006).

    Article  CAS  Google Scholar 

  21. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  22. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  23. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  24. Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213–225 (2006).

    Article  CAS  Google Scholar 

  25. Roche, K.W., O'Brien, R.J., Mammen, A.L., Bernhardt, J. & Huganir, R.L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 (1996).

    Article  CAS  Google Scholar 

  26. Barria, A., Muller, D., Derkach, V., Griffith, L.C. & Soderling, T.R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  27. Mammen, A.L., Kameyama, K., Roche, K.W. & Huganir, R.L. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533 (1997).

    Article  CAS  Google Scholar 

  28. Kopec, C.D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006).

    Article  CAS  Google Scholar 

  29. Rouach, N. et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat. Neurosci. 8, 1525–1533 (2005).

    Article  CAS  Google Scholar 

  30. Tomita, S., Stein, V., Stocker, T.J., Nicoll, R.A. & Bredt, D.S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005).

    Article  CAS  Google Scholar 

  31. Chen, L., El-Husseini, A., Tomita, S., Bredt, D.S. & Nicoll, R.A. Stargazin differentially controls the trafficking of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. Mol. Pharmacol. 64, 703–706 (2003).

    Article  CAS  Google Scholar 

  32. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005).

    Article  CAS  Google Scholar 

  33. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  Google Scholar 

  34. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  Google Scholar 

  35. Turetsky, D., Garringer, E. & Patneau, D.K. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J. Neurosci. 25, 7438–7448 (2005).

    Article  CAS  Google Scholar 

  36. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  CAS  Google Scholar 

  37. Greger, I.H., Khatri, L. & Ziff, E.B. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759–772 (2002).

    Article  CAS  Google Scholar 

  38. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  39. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  Google Scholar 

  40. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  Google Scholar 

  41. Seidenman, K.J., Steinberg, J.P., Huganir, R. & Malinow, R. Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J. Neurosci. 23, 9220–9228 (2003).

    Article  CAS  Google Scholar 

  42. Lu, W. & Ziff, E.B. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 47, 407–421 (2005).

    Article  CAS  Google Scholar 

  43. Osten, P. & Stern-Bach, Y. Learning from stargazin: the mouse, the phenotype and the unexpected. Curr. Opin. Neurobiol. 16, 275–280 (2006).

    Article  CAS  Google Scholar 

  44. Cummins, T.R. et al. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961 (2001).

    Article  CAS  Google Scholar 

  45. Baroudi, G., Carbonneau, E., Pouliot, V. & Chahine, M. SCN5A mutation (T1620M) causing Brugada syndrome exhibits different phenotypes when expressed in Xenopus oocytes and mammalian cells. FEBS Lett. 467, 12–16 (2000).

    Article  CAS  Google Scholar 

  46. Mantegazza, M. et al. Molecular determinants for modulation of persistent sodium current by G protein betagamma subunits. J. Neurosci. 25, 3341–3349 (2005).

    Article  CAS  Google Scholar 

  47. Wang, R. et al. Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron 59, 997–1008 (2008).

    Article  CAS  Google Scholar 

  48. Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S. & Nicoll, R.A. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55, 905–918 (2007).

    Article  CAS  Google Scholar 

  49. Menuz, K., Kerchner, G.A., O'Brien, J.L. & Nicoll, R.A. Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 56, 22–29 (2008).

    Article  Google Scholar 

  50. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Dawkins for expert technical assistance, J. Boehm for making viral constructs, R. Huganir for kindly providing STG cDNA and GluR1-deficient mice, and all of the members of the Malinow laboratory for useful discussions. This work was supported by grants from the Netherlands Organization for Scientific Research (H.W.K.), the Undergraduate Research Program of Cold Spring Harbor Laboratory (M.E.K.) and the US National Institutes of Health (R.M.).

Author information

Authors and Affiliations

Authors

Contributions

H.W.K. performed all of the experimental work. H.W.K. and R.M. designed the experiments and wrote the manuscript. C.D.K. wrote custom software for imaging analysis. M.E.K. designed the protocol for the immunohistochemistry experiments.

Corresponding author

Correspondence to Roberto Malinow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessels, H., Kopec, C., Klein, M. et al. Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat Neurosci 12, 888–896 (2009). https://doi.org/10.1038/nn.2340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing