Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature

A Corrigendum to this article was published on 01 May 2005

Abstract

We describe a new methodology, based on terminal perfusion of rodents with a reactive ester derivative of biotin that enables the covalent modification of proteins readily accessible from the bloodstream. Biotinylated proteins from total organ extracts can be purified on streptavidin resin in the presence of strong detergents, digested on the resin and subjected to liquid chromatography–tandem mass spectrometry for identification. In the present study, in vivo biotinylation procedure led to the identification of hundreds of proteins in different mouse organs, including some showing a restricted pattern of expression in certain body tissues. Furthermore, biotinylation of mice with F9 subcutaneous tumors or orthotopic kidney tumors revealed both quantitative and qualitative differences in the recovery of biotinylated proteins, as compared to normal tissues. This technology is applicable to proteomic investigations of the differential expression of accessible proteins in physiological and pathological processes in animal models, and to human surgical specimens using ex vivo perfusion procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the relevant steps of the in vivo biotinylation method.
Figure 2: Histochemical and immunofluorescence analysis of organ and tumor sections.
Figure 3: Chromatographic elution profiles of tryptic peptides from the healthy and tumor-bearing kidneys of three independent RENCA mice.
Figure 4: Western blot analysis of organ-specific markers (a) Equal amounts of heart, kidney, liver, skeletal muscle, F9 and RENCA tumor total protein extracts from a saline-perfused SvEv mouse were separated by SDS-PAGE and stained with Coomassie Brilliant Blue.
Figure 5: Immunofluorescence detection of organ-specific markers.

Similar content being viewed by others

References

  1. Auerbach, R., Alby, L., Morrissey, L.W., Tu, M. & Joseph, J. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 29, 401–411 (1985).

    Article  CAS  Google Scholar 

  2. Aird, W.C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol. 138, 1117–1124 (1997).

    Article  CAS  Google Scholar 

  3. Chi, J.T. et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100, 10623–10628 (2003).

    Article  CAS  Google Scholar 

  4. Hirakawa, S. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 162, 575–586 (2003).

    Article  CAS  Google Scholar 

  5. Lawson, N.D. & Weinstein, B.M. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3, 674–682 (2002).

    Article  CAS  Google Scholar 

  6. Muller, A.M., Hermanns, M.I., Cronen, C. & Kirkpatrick, C.J. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Exp. Mol. Pathol. 73, 171–180 (2002).

    Article  CAS  Google Scholar 

  7. Braddock, M. et al. Fluid shear stress modulation of gene expression in endothelial cells. News Physiol. Sci. 13, 241–246 (1998).

    CAS  PubMed  Google Scholar 

  8. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  9. Cleaver, O. & Melton, D.A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    Article  CAS  Google Scholar 

  10. Oh, P. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–635 (2004).

    Article  CAS  Google Scholar 

  11. Birchler, M., Viti, F., Zardi, L., Spiess, B. & Neri, D. Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment. Nat. Biotechnol. 17, 984–988 (1999).

    Article  CAS  Google Scholar 

  12. Carnemolla, B. et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99, 1659–1665 (2002).

    Article  Google Scholar 

  13. Halin, C. et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol. 20, 264–269 (2002).

    Article  CAS  Google Scholar 

  14. Santimaria, M. et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9, 571–579 (2003).

    CAS  PubMed  Google Scholar 

  15. Posey, J.A. et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti αvβ3) antibody in patients with metastatic cancer. Cancer Biother. Radiopharm. 16, 125–132 (2001).

    Article  CAS  Google Scholar 

  16. Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat. Biotechnol. 15, 1271–1275 (1997).

    Article  CAS  Google Scholar 

  17. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  Google Scholar 

  18. Dentler, W.L. Nonradioactive methods for labeling and identifying membrane surface proteins. Methods Cell Biol. 47, 407–411 (1995).

    Article  CAS  Google Scholar 

  19. Ahn, K.S., Jung, Y.S., Kim, J., Lee, H. & Yoon, S.S. Behavior of murine renal carcinoma cells grown in ectopic or orthotopic sites in syngeneic mice. Tumour Biol. 22, 146–153 (2001).

    Article  CAS  Google Scholar 

  20. Zardi, L. et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. 6, 2337–2342 (1987).

    Article  CAS  Google Scholar 

  21. Carnemolla, B. et al. Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am. J. Pathol. 154, 1345–1352 (1999).

    Article  CAS  Google Scholar 

  22. Buhring, H.J. et al. Endoglin is expressed on a subpopulation of immature erythroid cells of normal human bone marrow. Leukemia 5, 841–847 (1991).

    CAS  PubMed  Google Scholar 

  23. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  Google Scholar 

  24. Gerritsen, M.E. et al. In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set. Physiol. Genomics 10, 13–20 (2002).

    Article  CAS  Google Scholar 

  25. Alessandri, G. et al. Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells. Clin. Exp. Metastasis 17, 655–662 (1999).

    Article  CAS  Google Scholar 

  26. Craven, R.A., Totty, N., Harnden, P., Selby, P.J. & Banks, R.E. Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am. J. Pathol. 160, 815–822 (2002).

    Article  CAS  Google Scholar 

  27. Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 22, 985–992 (2004).

    Article  CAS  Google Scholar 

  28. Geoghegan, K.F. & Kelly, M.A. Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom. Rev. (2004); advance online publication, 2 June 2004 (doi:10.1002/mas20019).

  29. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    Article  CAS  Google Scholar 

  30. Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D.M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article  Google Scholar 

  31. Maeda, H., Fang, J., Inutsuka, T. & Kitamoto, Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328 (2003).

    Article  CAS  Google Scholar 

  32. Nygren, C., von Holst, H., Mansson, J.E. & Fredman, P. Increased activity of lysosomal glycohydrolases in glioma tissue and surrounding areas from human brain. Acta Neurochir. (Wien) 139, 146–150 (1997).

    Article  CAS  Google Scholar 

  33. Cruet-Hennequart, S. et al. α(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22, 1688–1702 (2003).

    Article  CAS  Google Scholar 

  34. Levinson, H., Hopper, J.E. & Ehrlich, H.P. Overexpression of integrin αv promotes human osteosarcoma cell populated collagen lattice contraction and cell migration. J. Cell. Physiol. 193, 219–224 (2002).

    Article  CAS  Google Scholar 

  35. Pecheur, I. et al. Integrin α(v)β3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 16, 1266–1268 (2002).

    Article  CAS  Google Scholar 

  36. Sipkins, D.A. et al. Detection of tumor angiogenesis in vivo by αVβ3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998).

    Article  CAS  Google Scholar 

  37. Kumar, C.C. Integrin αvβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr. Drug Targets 4, 123–131 (2003).

    Article  CAS  Google Scholar 

  38. Comin-Anduix, B. et al. The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur. J. Biochem. 268, 4177–4182 (2001).

    Article  CAS  Google Scholar 

  39. An, J. et al. Proteomics analysis of differentially expressed metastasis-associated proteins in adenoid cystic carcinoma cell lines of human salivary gland. Oral Oncol. 40, 400–408 (2004).

    Article  CAS  Google Scholar 

  40. Boon, K. et al. An anatomy of normal and malignant gene expression. Proc. Natl. Acad. Sci. USA 99, 11287–11292 (2002).

    Article  CAS  Google Scholar 

  41. Iverson, A.J., Bianchi, A., Nordlund, A.C. & Witters, L.A. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem. J. 269, 365–371 (1990).

    Article  CAS  Google Scholar 

  42. Magnard, C. et al. BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains. Oncogene 21, 6729–6739 (2002).

    Article  CAS  Google Scholar 

  43. Muller-Tidow, C. et al. High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin. Cancer Res. 10, 1241–1249 (2004).

    Article  Google Scholar 

  44. Jung, J.W., Ji, A.R., Lee, J., Kim, U.J. & Lee, S.T. Organization of the human PTK7 gene encoding a receptor protein tyrosine kinase-like molecule and alternative splicing of its mRNA. Biochim. Biophys. Acta 1579, 153–163 (2002).

    Article  CAS  Google Scholar 

  45. Minard, M.E., Kim, L.S., Price, J.E. & Gallick, G.E. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res. Treat. 84, 21–32 (2004).

    Article  CAS  Google Scholar 

  46. Adam, L., Vadlamudi, R.K., McCrea, P. & Kumar, R. Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/β-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J. Biol. Chem. 276, 28443–28450 (2001).

    Article  CAS  Google Scholar 

  47. Qi, H. et al. Caspase-mediated cleavage of the TIAM1 guanine nucleotide exchange factor during apoptosis. Cell Growth Differ. 12, 603–611 (2001).

    CAS  PubMed  Google Scholar 

  48. Peirce, M.J., Wait, R., Begum, S., Saklatvala, J. & Cope, A.P. Expression profiling of lymphocyte plasma membrane proteins. Mol. Cell. Proteomics 3, 56–65 (2004).

    Article  CAS  Google Scholar 

  49. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  Google Scholar 

  50. Berstine, E.G., Hooper, M.L., Grandchamp, S. & Ephrussi, B. Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. USA 70, 3899–3903 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Le Hir (Anatomy Institute, University of Zurich) for help in the vascular perfusion fixation of mice used in indirect immunofluorescence experiments and to A. Garofalo (Mario Negri Institute) for technical support. Financial support of the Gebert-Rüf Foundation, the Swiss National Science Foundation and the Bundesamt für Bildung und Wissenschaft (European Union Projects Angiogenesis and Stroma FPS/6 #503233) is gratefully acknowledged. J.-N.R. is a recipient of a Bundesamt für Bildung und Wissenschaft salary (FLUOR–MMPI). G.E. is on leave of absence from the Institute of Neurobiology and Molecular Medicine CNR, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Subcellular localization of proteins identified (PDF 363 kb)

Supplementary Table 1

Complete list of proteins identified in mouse organs and tumors (PDF 165 kb)

Supplementary Methods (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybak, JN., Ettorre, A., Kaissling, B. et al. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2, 291–298 (2005). https://doi.org/10.1038/nmeth745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing