Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An evaluation of 3C-based methods to capture DNA interactions

Abstract

The shape of the genome is thought to play an important part in the coordination of transcription and other DNA-metabolic processes. Chromosome conformation capture (3C) technology allows us to analyze the folding of chromatin in the native cellular state at a resolution beyond that provided by current microscopy techniques. It has been used, for example, to demonstrate that regulatory DNA elements communicate with distant target genes through direct physical interactions that loop out the intervening chromatin fiber. Here we discuss the intricacies of 3C and new 3C-based methods including the 4C, 5C and ChIP-loop assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of 3C-based methods.
Figure 2: Ligation events measured at the β-globin locus.
Figure 3: Outline of the two basic 4C strategies.
Figure 4: Results obtained by 4C technology are highly reproducible.

Similar content being viewed by others

References

  1. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  2. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  3. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  Google Scholar 

  4. Miele, A., Gheldof, N., Tabuchi, T.M., Dostie, J. & Dekker, J. Mapping chromatin interactions by chromosome conformation capture (3C). in Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 21.11.1–21.11.20 (John Wiley & Sons, Hoboken, New Jersey, USA, 2006).

    Google Scholar 

  5. Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733 (2007).

    Article  CAS  Google Scholar 

  6. Dostie, J. & Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988–1002 (2007).

    Article  CAS  Google Scholar 

  7. Dekker, J. The three 'C' s of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17–21 (2006).

    Article  CAS  Google Scholar 

  8. Palstra, R.J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  9. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  Google Scholar 

  10. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  11. Liu, Z. & Garrard, W.T. Long-range interactions between three transcriptional enhancers, active Vκ gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol. Cell. Biol. 25, 3220–3231 (2005).

    Article  CAS  Google Scholar 

  12. O'Sullivan, J.M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 36, 1014–1018 (2004).

    Article  CAS  Google Scholar 

  13. Skok, J.A. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat. Immunol. 8, 378–387 (2007).

    Article  CAS  Google Scholar 

  14. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  15. de Laat, W. & Grosveld, F. Inter-chromosomal gene regulation in the mammalian cell nucleus. Curr. Opin. Genet. Dev., published online 18 September 2007 (doi:10.1016/j.gde.2007.07.009).

    Article  CAS  Google Scholar 

  16. Solomon, M.J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474 (1985).

    Article  CAS  Google Scholar 

  17. Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214 (1997).

    Article  CAS  Google Scholar 

  18. Jackson, V. Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17, 125–139 (1999).

    Article  CAS  Google Scholar 

  19. Hogan, G.J., Lee, C.K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    Article  Google Scholar 

  20. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  Google Scholar 

  21. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  22. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 2349–2354 (2006).

    Article  CAS  Google Scholar 

  23. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495 (2006).

    Article  Google Scholar 

  24. Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    Article  CAS  Google Scholar 

  25. Cai, S., Lee, C.C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1278–1288 (2006).

    Article  CAS  Google Scholar 

  26. Kumar, P.P. et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat. Cell Biol. 9, 45–56 (2007).

    Article  Google Scholar 

  27. Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  Google Scholar 

  28. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  Google Scholar 

  29. Branco, M.R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Grosveld and the members of our laboratory for discussion. This work was supported by grants from the Dutch Scientific Organization (NWO) (016-006-026) and (912-04-082) to W.d.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter de Laat.

Ethics declarations

Competing interests

W.d.L. holds a patent application no. PCT/IB2006/002268 on 4C technology.

Supplementary information

Supplementary Text and Figures

Supplementary Protocol 4C technology (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4, 895–901 (2007). https://doi.org/10.1038/nmeth1114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing