Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hematopoietic progenitor cell lines with myeloid and lymphoid potential

Abstract

Investigation of immune-cell differentiation and function is limited by shortcomings of suitable and scalable experimental systems. Here we show that retroviral delivery of an estrogen-regulated form of Hoxb8 into mouse bone marrow cells can be used along with Flt3 ligand to conditionally immortalize early hematopoietic progenitor cells (Hoxb8-FL cells). Hoxb8-FL cells have lost self-renewal capacity and potential to differentiate into megakaryocytes and erythrocytes but retain the potential to differentiate into myeloid and lymphoid cells. They differentiate in vitro and in vivo into macrophages, granulocytes, dendritic cells, B lymphocytes and T lymphocytes that are phenotypically and functionally indistinguishable from their primary counterparts. Quantitative in vitro assays indicate that myeloid and B-cell potential of Hoxb8-FL cells is comparable to that of primary lymphoid-primed multipotent progenitors, whereas T-cell potential is diminished. The simplicity of this system and the unlimited proliferative capacity of Hoxb8-FL cells will enable studies of immune-cell differentiation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth and morphology of Hoxb8-FL cells.
Figure 2: Phenotype and function of Hoxb8-FL–derived myeloid cells.
Figure 3: In vivo differentiation of Hoxb8-FL cells.
Figure 4: In vivo differentiation and function of Hoxb8-FL–derived lymphocytes.
Figure 5: Hoxb8-FL cells sustain multilineage potential in vitro, but lack the potential to differentiate into megakaryocytes and erythroid cells (MkE potential).
Figure 6: Gene expression and biochemical application of Hoxb8-FL cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Argiropoulos, B. & Humphries, R.K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776 (2007).

    Article  CAS  Google Scholar 

  2. Pineault, N., Helgason, C.D., Lawrence, H.J. & Humphries, R.K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 30, 49–57 (2002).

    Article  CAS  Google Scholar 

  3. Wang, G.G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat. Methods 3, 287–293 (2006).

    Article  CAS  Google Scholar 

  4. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  5. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by Flt3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    Article  CAS  Google Scholar 

  6. Steinman, R.M. Dendritic cells: understanding immunogenicity. Eur. J. Immunol. 37 (suppl. 1), S53–S60 (2007).

    Article  CAS  Google Scholar 

  7. Naik, S.H. et al. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 174, 6592–6597 (2005).

    Article  CAS  Google Scholar 

  8. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    Article  CAS  Google Scholar 

  9. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  10. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  11. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  Google Scholar 

  12. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  Google Scholar 

  13. Zlotoff, D.A. et al. Delivery of progenitors to the thymus limits T-lineage reconstitution after bone marrow transplantation. Blood 118, 1962–1970 (2011).

    Article  CAS  Google Scholar 

  14. Prockop, S.E. & Petrie, H.T. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J. Immunol. 173, 1604–1611 (2004).

    Article  CAS  Google Scholar 

  15. Carlyle, J.R. et al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182 (1997).

    Article  CAS  Google Scholar 

  16. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  Google Scholar 

  17. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  18. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  19. Sultana, D.A., Bell, J.J., Zlotoff, D.A., De Obaldia, M.E. & Bhandoola, A. Eliciting the T cell fate with Notch. Semin. Immunol. 22, 254–260 (2010).

    Article  CAS  Google Scholar 

  20. Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768–772 (2008).

    Article  CAS  Google Scholar 

  21. Bell, J.J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764–767 (2008).

    Article  CAS  Google Scholar 

  22. Luc, S. et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol. 13, 412–419 (2012).

    Article  CAS  Google Scholar 

  23. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  Google Scholar 

  24. Yang, L. et al. Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005).

    Article  CAS  Google Scholar 

  25. Oshima, S. et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 457, 906–909 (2009).

    Article  CAS  Google Scholar 

  26. Zhou, J. et al. A20-binding inhibitor of NF-kappaB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc. Natl. Acad. Sci. USA 108, E998–E1006 (2011).

    Article  CAS  Google Scholar 

  27. Mauro, C. et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J. Biol. Chem. 281, 18482–18488 (2006).

    Article  CAS  Google Scholar 

  28. Cohen, S., Ciechanover, A., Kravtsova-Ivantsiv, Y., Lapid, D. & Lahav-Baratz, S. ABIN-1 negatively regulates NF-kappaB by inhibiting processing of the p105 precursor. Biochem. Biophys. Res. Commun. 389, 205–210 (2009).

    Article  CAS  Google Scholar 

  29. Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).

    Article  CAS  Google Scholar 

  30. Wallis, V.J., Leuchars, E., Chwalinski, S. & Davies, A.J. On the sparse seeding of bone marrow and thymus in radiation chimaeras. Transplantation 19, 2–11 (1975).

    Article  CAS  Google Scholar 

  31. Spangrude, G.J. & Scollay, R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny. J. Immunol. 145, 3661–3668 (1990).

    CAS  PubMed  Google Scholar 

  32. Zlotoff, D.A. et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897–1905 (2010).

    Article  CAS  Google Scholar 

  33. Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  Google Scholar 

  34. Serwold, T., Ehrlich, L.I. & Weissman, I.L. Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 113, 807–815 (2009).

    Article  CAS  Google Scholar 

  35. Stuehr, D.J. & Nathan, C.F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555 (1989).

    Article  CAS  Google Scholar 

  36. Tora, L. et al. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 8, 1981–1986 (1989).

    Article  CAS  Google Scholar 

  37. Schmitt, T.M. & Zuniga-Pflucker, J.C. T-cell development, doing it in a dish. Immunol. Rev. 209, 95–102 (2006).

    Article  Google Scholar 

  38. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  Google Scholar 

  39. Loeffler, D.I., Schoen, C.U., Goebel, W. & Pilgrim, S. Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect. Immun. 74, 3946–3957 (2006).

    Article  CAS  Google Scholar 

  40. Di Tullio, A. et al. CCAAT/enhancer binding protein alpha (C/EBP(alpha))-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation. Proc. Natl. Acad. Sci. USA 108, 17016–17021 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Animal Resource Center, the Flow Cytometry and Cell Sorting Resource, and the Proteomics and Mass Spectrometry laboratory at the St. Jude Children's Research Hospital and L. Chi for technical assistance; and H. Hochrein for helpful discussion related to dendritic cell biology. Supported by National Institutes of Health National Institute of Allergy and Infectious Diseases grant AI083443 to H.H., the National Institutes of Health National Cancer Institute grant P30CA021765 and the American Lebanese Syrian Associated Charities. We thank M. Kamps (Univ. California, San Diego) for the SCF-producing B16 melanoma cell line, R. Steinman (Rockefeller Univ.) for the Flt3L-producing B16 melanoma cell line, S. Zandi and M. Sigvardsson (Linköping Univ.) and D. Bryder (Lund Univ.) for hematopoietic progenitor cell markers, and W. Goebel and D. Loeffler (Univ. Würzburg) for ovalbumin-encoding cDNA.

Author information

Authors and Affiliations

Authors

Contributions

V.R., R.W., V.C. and H.H. planned experiments; V.R., R.W., J.Z., V.C. and H.H. performed experiments; A.A.H., D.F., V.C., V.R. and H.H. analyzed data; V.R. and H.H. wrote the manuscript; and H.H. conceived the project.

Corresponding author

Correspondence to Hans Häcker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Table 1 (PDF 1539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redecke, V., Wu, R., Zhou, J. et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods 10, 795–803 (2013). https://doi.org/10.1038/nmeth.2510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing