Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions

Abstract

We describe a general mass spectrometry approach to determine subunit stoichiometry and lipid binding in intact membrane protein complexes. By exploring conditions for preserving interactions during transmission into the gas phase and for optimally stripping away detergent, by subjecting the complex to multiple collisions, we released the intact complex largely devoid of detergent. This enabled us to characterize both subunit stoichiometry and lipid binding in 4 membrane protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subunit stoichiometry and lipid binding for two ABC transporters.
Figure 2: Incorporation of modified subunits in the EmrE dimer.
Figure 3: Trimers of MexB enable homology modeling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schagger, H. & von Jagow, G. Anal. Biochem. 199, 223–231 (1991).

    Article  CAS  Google Scholar 

  2. Burgess, N.K., Stanley, A.M. & Fleming, K.G. Methods Cell Biol. 84, 181–211 (2008).

    Article  CAS  Google Scholar 

  3. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  4. Barrera, N.P., Di Bartolo, N., Booth, P.J. & Robinson, C.V. Science 321, 243–246 (2008).

    Article  CAS  Google Scholar 

  5. Locher, K.P., Lee, A.T. & Rees, D.C. Science 296, 1091–1098 (2002).

    Article  CAS  Google Scholar 

  6. Tate, C.G. Curr. Opin. Struct. Biol. 16, 457–464 (2006).

    Article  CAS  Google Scholar 

  7. Kobayashi, N., Nishino, K. & Yamaguchi, A. J. Bacteriol. 183, 5639–5644 (2001).

    Article  CAS  Google Scholar 

  8. Lubelski, J., van Merkerk, R., Konings, W.N. & Driessen, A.J. Biochemistry 45, 648–656 (2006).

    Article  CAS  Google Scholar 

  9. Yerushalmi, H., Lebendiker, M. & Schuldiner, S. J. Biol. Chem. 270, 6856–6863 (1995).

    Article  CAS  Google Scholar 

  10. Morshed, S.R., Lei, Y., Yoneyama, H. & Nakae, T. Biochem. Biophys. Res. Commun. 210, 356–362 (1995).

    Article  CAS  Google Scholar 

  11. Seeger, M.A. & van Veen, H.W. Biochim. Biophys. Acta 1794, 725–737 (2009).

    Article  CAS  Google Scholar 

  12. Goldfine, H. Adv. Microb. Physiol. 8, 1–58 (1972).

    Article  CAS  Google Scholar 

  13. Mokhonov, V. et al. Protein Expr. Purif. 40, 91–100 (2005).

    Article  CAS  Google Scholar 

  14. Seeger, M.A. et al. Science 313, 1295–1298 (2006).

    Article  CAS  Google Scholar 

  15. Sali, A. & Blundell, T.L. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  16. Chen, Y.J. et al. Proc. Natl. Acad. Sci. USA 104, 18999–19004 (2007).

    Article  CAS  Google Scholar 

  17. Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  Google Scholar 

  18. Lin, H.T. et al. J. Biol. Chem. 284, 1145–1154 (2009).

    Article  CAS  Google Scholar 

  19. de Ruyter, P.G., Kuipers, O.P. & de Vos, W.M. Appl. Environ. Microbiol. 62, 3662–3667 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Venter, H., Velamakanni, S., Balakrishnan, L. & van Veen, H.W. Biochem. Pharmacol. 75, 866–874 (2008).

    Article  CAS  Google Scholar 

  21. Margolles, A., Putman, M., van Veen, H.W. & Konings, W.N. Biochemistry 38, 16298–16306 (1999).

    Article  CAS  Google Scholar 

  22. Tate, C.G., Kunji, E.R., Lebendiker, M. & Schuldiner, S. EMBO J. 20, 77–81 (2001).

    Article  CAS  Google Scholar 

  23. Shi, J., Blundell, T.L. & Mizuguchi, K. J. Mol. Biol. 310, 243–257 (2001).

    Article  CAS  Google Scholar 

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  25. Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S. & Overington, J.P. Bioinformatics 14, 617–623 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Biotechnology and Biological Sciences Research Council, Medical Research Council, European Molecular Biology Organization, Swiss National Science Foundation, The Wellcome Trust, Royal Society, European Union PROSPECTS and Walters-Kundert Trust. We thank M. Welch (University of Cambridge) for P. aeruginosa genomic DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol V Robinson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3 and Supplementary Protocol (PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera, N., Isaacson, S., Zhou, M. et al. Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6, 585–587 (2009). https://doi.org/10.1038/nmeth.1347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing