Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current-induced switching in a magnetic insulator

Abstract

The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin–orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and magnetic properties of PMA TmIG.
Figure 2: SMR measurements on a TmIG/Pt bilayer device.
Figure 3: Determination of the damping-like SOT in TmIG/Pt by harmonic measurements.
Figure 4: Current-induced magnetization switching of TmIG/Pt.

Similar content being viewed by others

References

  1. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  2. Brataas, A. & Hals, K. M. D. Spin–orbit torques in action. Nat. Nanotech. 9, 86–88 (2014).

    Article  CAS  Google Scholar 

  3. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  4. Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotech. 11, 352–360 (2016).

    Article  CAS  Google Scholar 

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  6. Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  7. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

  8. Liu, L. Q., Pai, C-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012).

    Article  Google Scholar 

  9. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  10. Ryu, K. S., Thomas, L., Yang, S. H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  11. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  12. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Article  CAS  Google Scholar 

  13. Hahn, C. et al. Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B 87, 174417 (2013).

    Article  Google Scholar 

  14. Weiler, M. et al. Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013).

    Article  Google Scholar 

  15. Vlietstra, N., Shan, J., Castel, V., van Wees, B. J. & Ben Youssef, J. Spin-Hall magnetoresistance in platinum on yttrium iron garnet: dependence on platinum thickness and in-plane/out-of-plane magnetization. Phys. Rev. B 87, 184421 (2013).

    Article  Google Scholar 

  16. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–267 (2010).

    Article  CAS  Google Scholar 

  17. Hamadeh, A. et al. Full control of the spin-wave damping in a magnetic insulator using spin–orbit torque. Phys. Rev. Lett. 113, 197203 (2014).

    Article  CAS  Google Scholar 

  18. Chumak, A. V., Vasyuchka, V. I. I., Serga, A. A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  19. Kubota, M. et al. Stress-induced perpendicular magnetization in epitaxial iron garnet thin films. Appl. Phys. Exp. 5, 103002 (2012).

    Article  Google Scholar 

  20. Paoletti, A. Physics of Magnetic Garnets (North-Holland Publishing Company, 1978).

    Google Scholar 

  21. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  22. Meyer, S. et al. Anomalous Hall effect in YIG vertical bar Pt bilayers. Appl. Phys. Lett. 106, 132402 (2015).

    Article  Google Scholar 

  23. Chen, Y. T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).

    Article  Google Scholar 

  24. Liu, L. Q., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 36601 (2011).

    Article  Google Scholar 

  25. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta vertical bar CoFeB vertical bar MgO. Nat. Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  26. Schreier, M. et al. Current heating induced spin Seebeck effect. Appl. Phys. Lett. 103, 242404 (2013).

    Article  Google Scholar 

  27. Liu, L. Q., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 96602 (2012).

    Article  Google Scholar 

  28. Ibrahim, I., Schweigert, V. & Peeters, F. Diffusive transport in a Hall junction with a microinhomogeneous magnetic field. Phys. Rev. B 57, 15416–15427 (1998).

    Article  CAS  Google Scholar 

  29. Avci, C. O. et al. Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers. Phys. Rev. B 89, 214419 (2014).

    Article  Google Scholar 

  30. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. A.Q. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and from the Max-Planck-Institute of Microstructure Physics. C.O.A. and C.-F.P. thank K. Ueda and A. J. Tan for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.S.D.B. and C.A.R. proposed and supervised the study. C.O.A., M.M., C.-F.P. and G.S.D.B. designed the transport experiments. A.Q., A.S.T. and M.C.O. fabricated the TmIG samples. A.Q. performed structural and magnetic analysis. M.M. carried out photolithography processing. C.O.A., M.M. and A.Q. carried out transport measurements. M.M. and L.C. designed and established the electrical measurement equipment.

Corresponding authors

Correspondence to Caroline A. Ross or Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avci, C., Quindeau, A., Pai, CF. et al. Current-induced switching in a magnetic insulator. Nature Mater 16, 309–314 (2017). https://doi.org/10.1038/nmat4812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing