Twenty years ago, the 'phonon-glass, electron-crystal' concept changed thinking in thermoelectric materials research, resulting in new high-performance materials and an increased focus on controlling structure and chemical bonding to minimize irreversible heat transport in crystals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Change history
26 November 2015
In the version of the Commentary 'Better thermoelectrics through glass-like crystals' originally published (Nature Mater. 14, 1182–1185; 2015), in Fig. 2 the units on the y axis should have been 'µW cm-1 K-2'. Corrected in the online versions after print 26 November 2015.
References
Nolas, G. S., Sharp, J. & Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments (Springer, 2001).
Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407 (CRC, 1995).
Altenkirch, E. Physikalische Zeitschrift 10, 560–580 (1909).
Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).
Goldsmid, H. J. Thermoelectric Refrigeration (Plenum, 1964).
Morelli, D. T. & Meisner, G. P. J. Appl. Phys. 77, 3777–3781 (1995).
Sales, B. C., Mandrus, D. & Williams, R. K. Science 272, 1325–1328 (1996).
Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M. & Ehrlich, A. C. J. Appl. Phys. 79, 4002–4008 (1996).
Uher, C. in Semiconductors and Semimetals Vol. 69 (ed. Tritt, T. M.) 139 (Academic, 2001).
Nolas, G. S., Cohn, J. L., Slack, G. A. & Schujmann, S. B. Appl. Phys. Lett. 73, 178–180 (1998).
Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H. & Slack, G. A. Phys. Rev. Lett. 82, 779 (1999).
Nolas, G. S. (ed.) The Physics and Chemistry of Inorganic Clathrates (Springer, 2014).
Shi, X. et al. J. Am. Chem. Soc. 133, 7837–7846 (2011).
Cahill, D. G., Watson, S. K. & Pohl, R. O. Phys. Rev. B 46, 6131–6140 (1992).
Einstein, A. Ann. Phys. 35, 679–694 (1911).
Slack, G. A. in Solid State Physics Vol. 34, 1 (Academic Press, 1979).
Chiritescu, C. et al. Science 315, 351–353 (2007).
Roufosse, M. C. & Klemens P. G. J. Geophys. Res. 79, 703–705 (1974).
Mahan, G. D. & Sofo, J. O. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).
Slack, G. A. & Tsoukala, V. G. J. Appl. Phys. 76, 1665–1671 (1994).
Braun, D. J. & Jeitschko, W. J. Less Common Met. 72, 147–156 (1980).
Shi, X. et al. Adv. Funct. Mater. 20, 755–763 (2010).
Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Chem. Mater. 18, 1873–1877 (2006).
Zhao, L.-D. et al. Nature 508, 373–377 (2014).
Yang, J. & Caillat, T. MRS Bulletin 31, 224–229 (2006).
Salvador, J. R. et al. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014).
Slack, G. A. Mater. Res. Soc. Symp. Proc. 478, 47–54 (1997).
Takabatake, T., Suekuni, K. & Nakayama, T. Rev. Mod. Phys. 86, 669–716 (2014).
Christensen, M. et al. Nature Mater. 7, 811–815 (2008).
Meisner, G. P., Morelli, D. T., Hu, S., Yang, J. & Uher, C. Phys. Rev. Lett. 80, 3551–3554 (1998).
Koza, M. K. et al. Nature Mater. 7, 805–810 (2008).
Prokofiev, A. et al. Nature Mater. 12, 1096–1101 (2013).
Tang, Y. et al. Nature Mater. 14, 1223–1228 (2015).
Wells, A. F. Structural Inorganic Chemistry (Oxford Univ. Press, 1987).
Koumoto, K. et al. J. Am. Ceram. Soc. 96, 1–23 (2013).
Skoug, E. J. & Morelli D. T. Phys. Rev. Lett. 107, 235901 (2011).
Lai, W., Wang, Y., Morelli, D. T. & Lu, X. Adv. Funct. Mater. http://doi.org/f27zp2 (2015).
Dong, Y. et al. ChemPhysChem http://doi.org/f3f5mt (2015).
Nolas, G. S., Kaeser, M., Littleton, R. T. IV & Tritt, T. M. Appl. Phys. Lett. 77, 1855–1867 (2000).
Chung, D. Y. et al. Science 287, 1024–1027 (2000).
Martin, J., Wang, H. & Nolas, G. S. Appl. Phys. Lett. 92, 222110 (2008).
Pei, Y. et al. Nature 473, 66–69 (2011).
Snyder, G. J. & Toberer, E. S. Nature Mater. 7, 105–114 (2008).
Dresselhaus, M. S. et al. Adv. Mater. 19, 1043–1053 (2007).
Heremans, J., Dresselhaus, M. S., Bell, L. E. & Morelli, D. T. Nature Nanotech. 8, 471–473 (2013).
Acknowledgements
D.T.M. acknowledges support from the Center for Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001054. G.S.N. gratefully acknowledges the support of the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under Award Number DE-FG02-04ER46145 for funding research on clathrates, and the II-VI Foundation for funding research on skutterudites.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Beekman, M., Morelli, D. & Nolas, G. Better thermoelectrics through glass-like crystals. Nature Mater 14, 1182–1185 (2015). https://doi.org/10.1038/nmat4461
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4461