Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4

Abstract

Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4f electric quadrupole orientations and its domain structure in DyFe3(BO3)4, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the structural phase transition using specific heat, non-resonant diffraction, and resonant diffraction at the Dy M4,5 absorption edges.
Figure 2: Sample position and circular X-ray polarization dependence of the intensity of forbidden reflection 001 and spatial images of the crystallographic chiral domain structure at 200 K.
Figure 3: Helix chiral motif of quadrupole moments.
Figure 4: Azimuthal angle dependence of the integrated intensity of forbidden reflection 001 at various temperatures for Sample 2 with nearly a monochiral domain (P3221).

Similar content being viewed by others

References

  1. Wagnière, G. H. On Chirality and the Universal Asymmetry (Wiley–VCH, (2007).

    Book  Google Scholar 

  2. Barron, L. D. Chirality and life. Space Sci. Rev. 135, 187–201 (2008).

    Article  CAS  Google Scholar 

  3. Neumann, F. E. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers (B. G. Teubner-Verlag, (1885).

    Google Scholar 

  4. Condon, E. U. Theories of optical rotatory power. Rev. Mod. Phys. 9, 432–457 (1937).

    Article  CAS  Google Scholar 

  5. Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168, 271–272 (1951).

    Article  CAS  Google Scholar 

  6. Lovesey, S. W. & Scagnoli, V. Chirality, magnetic charge and other strange entities in resonant X-ray Bragg diffraction. J. Phys. Condens. Matter 21, 474214 (2009).

    Article  Google Scholar 

  7. Igarashi, J. & Takahashi, M. Resonant X-ray scattering from chiral materials: alpha-quartz and alpha-berlinite. Phys. Rev. B 86, 104116 (2012).

    Article  Google Scholar 

  8. Tanaka, Y. et al. Right handed or left handed? Forbidden X-ray diffraction reveals chirality. Phys. Rev. Lett. 100, 145502 (2008).

    Article  Google Scholar 

  9. Tanaka, Y. et al. Determination of structural chirality of berlinite and quartz using resonant X-ray diffraction with circularly polarized X-rays. Phys. Rev. B 81, 144104 (2010).

    Article  Google Scholar 

  10. Tanaka, Y. et al. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized X-rays. J. Phys. Condens. Matter 22, 122201 (2010).

    Article  CAS  Google Scholar 

  11. Ohsumi, H. et al. Three-dimensional near-surface imaging of chirality domains with circularity polarized X-rays. Angew. Chem. 2013, 125 (2013).

    Google Scholar 

  12. Lovesey, S. W., Balcar, E., Knight, K. S. & Fernández Rodríguez, J. Electronic properties of crystalline materials observed in X-ray diffraction. Phys. Rep. 411, 233–289 (2005).

    Article  CAS  Google Scholar 

  13. Lovesey, S. W., Balcar, E. & Tanaka, Y. Resonant diffraction of circularly polarized X-rays by a chiral crystal (low quartz). J. Phys. Condens. Matter 20, 272201 (2008).

    Article  Google Scholar 

  14. Lovesey, S. W. et al. Melting of chiral order in terbium manganite (TbMnO3) observed with resonant X-ray Bragg diffraction. J. Phys. Condens. Matter 25, 362202 (2013).

    Article  CAS  Google Scholar 

  15. Gibbs, D., Moncton, D. E., D’Amico, K. L., Bohr, J. & Griier, B. H. Magnetic X-ray scattering studies of holmium using synchrotron radiation. Phys. Rev. Lett. 55, 234–237 (1985).

    Article  CAS  Google Scholar 

  16. Lang, J. C., Lee, D. R., Haskel, D. & Srajer, G. Imaging spiral magnetic domains in Ho metal using circularly polarized Bragg diffraction. J. Appl. Phys. 95, 6537–6539 (2004).

    Article  CAS  Google Scholar 

  17. Schierle, E. et al. Cycloidal order of 4f moments as a probe of chiral domains in DyMnO3 . Phys. Rev. Lett. 105, 167207 (2010).

    Article  CAS  Google Scholar 

  18. Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  19. Kimura, T. Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

    Article  CAS  Google Scholar 

  20. Nagaosa, N., Sirova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  21. Hinatsu, Y., Doi, Y., Ito, K., Wakeshima, M. & Alemi, A. Magnetic and calorimetric studies on rare-earth iron borates LnFe3(BO3)4 (Ln = Y, La-Ns, Sm-Ho). J. Solid State Chem. 172, 438–445 (2003).

    Article  CAS  Google Scholar 

  22. Ritter, C., Pankrats, A., Gudim, I. & Vorotynov, A. A magnetic structure of iron borate DyFe3(BO3)4: a neutron diffraction study. J. Phys. Conf. Ser. 340, 012065 (2012).

    Article  Google Scholar 

  23. Popova, E. A. et al. Magnetization and specific heat of DyFe3(BO3)4 single crystal. Euro. Phys. J. B 62, 123–128 (2008).

    Article  CAS  Google Scholar 

  24. Popov, Yu. F. et al. Observation of spontaneous spin reorientation in Nd1 − xDyxFe3(BO3)4 ferroborates with a competitive R-Fe exchange. JETP Lett. 89, 345–351 (2009).

    Article  CAS  Google Scholar 

  25. Goedkoop, J. B. et al. Calculations of magnetic X-ray dichroism in the 3d absorption spectra of rare-earth compounds. Phys. Rev. B 37, 2086–2093 (1988).

    Article  CAS  Google Scholar 

  26. Mulders, A. M. et al. High-order Dy multipole motifs observed in DyB2C2 with resonant soft X-ray Bragg diffraction. J. Phys. Condens. Matter 18, 11195–11202 (2006).

    Article  CAS  Google Scholar 

  27. Joly, Y., Collins, S. P., Grenier, S., Tolentino, H. C. N. & De Santis, M. Birefringence and polarization rotation in resonant X-ray diffraction. Phys. Rev. B 86, 220101(R) (2012).

    Article  Google Scholar 

  28. Stanislavchuk, T. N., Chukalina, E. P., Popova, M. N., Bezmaternykh, L. N. & Gudim, I. A. Investigation of the iron borates DyFe3(BO3)4 and HoFe3(BO3)4 by the method of Er3+ spectroscopic probe. Phys. Lett. A 368, 408–411 (2007).

    Article  CAS  Google Scholar 

  29. Volkov, D. V., Demidov, A. A. & Kolmakova, N. P. Magnetic properties of DyFe3(BO3)4 . J. Exp. Theor. Phys. 106, 723–730 (2008).

    Article  CAS  Google Scholar 

  30. Malakhovskii, A. V., Sukhachev, A. L., Strokova, A. Yu & Gudim, I. A. Magneto-optical activity of ff transitions and properties of 4f states in single-crystal DyFe3(BO3)4 . Phys. Rev. B 88, 075103 (2013).

    Article  Google Scholar 

  31. Janoschek, M. et al. Single magnetic chirality in the magnetoelectric NdFe3(11BO3)4 . Phys. Rev. B 81, 094429 (2010).

    Article  Google Scholar 

  32. Gudim, I. A., Eremin, E. V. & Temerov, V. L. Flux growth and spin reorientation in trigonal Nd1 − xDyxFe3(BO3)4 single crystals. J. Cryst. Growth 312, 2427–2430 (2010).

    Article  CAS  Google Scholar 

  33. Takeuchi, T. et al. An ultrahigh-vacuum apparatus for resonant diffraction experiments using soft X-rays ( = 300–2,000 eV). Rev. Sci. Instrum. 80, 023905 (2009).

    Article  CAS  Google Scholar 

  34. Ohashi, H. et al. Performance of a highly stabilized and high-resolution beamline BL17SU for advanced soft X-ray spectroscopy at SPring-8. AIP Proc. 879, 523–526 (2007).

    Article  CAS  Google Scholar 

  35. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Haruki, T. Honda, Y. Shiratsuchi, M. Nagai, M. Ashida and H. Tada for their help in experiments, and K. Kimura for his enlightening discussions. This work was supported by KAKENHI (Grants No. 24244058, 25247054, and 23244074), MEXT, Japan. Resonant X-ray diffraction experiments were performed at beamline 17SU in SPring-8 with the approval of RIKEN (Proposal No. 3345 and 3394). Single-crystal X-ray diffraction experiments for crystal structure analysis were carried out at BL02B1, SPring-8 (Proposal No. 2013B0083).

Author information

Authors and Affiliations

Authors

Contributions

T.U., Y.T. and T.K. initiated this work. T.U. and H.N. carried out sample preparation and characterization. N.K., H.S. and Y.W. performed crystal structure analysis. T.U. and Y.T. measured resonant X-ray diffraction and analysed the data with assistance from H.N., A.C., M.O. and S.S. M.T. calculated the X-ray absorption spectrum. Y.T. and T.K. designed and directed the research, and wrote the paper.

Corresponding author

Correspondence to T. Kimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, T., Tanaka, Y., Nakajima, H. et al. Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4. Nature Mater 13, 611–618 (2014). https://doi.org/10.1038/nmat3942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing