Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observing bulk diamond spin coherence in high-purity nanodiamonds

Abstract

Nitrogen–vacancy (NV) centres in diamond are attractive for research straddling quantum information science1,2,3,4,5,6,7,8, nanoscale magnetometry9,10,11,12,13 and thermometry14,15. Whereas ultrapure bulk diamond NVs sustain the longest spin coherence times among optically accessible spins16,17,18, nanodiamond NVs exhibit persistently poor spin coherence17,19,20. Here we introduce high-purity nanodiamonds accommodating record-long NV coherence times, >60 μs, observed through universal dynamical decoupling21. We show that the main contribution to decoherence comes from nearby nitrogen impurities rather than surface states. We protect the NV spin free precession, essential to d.c. magnetometry, by driving solely these impurities into the motional narrowing regime. This extends the NV free induction decay time from 440 ns, longer than that in type Ib bulk diamond22, to 1.27 μs, which is comparable to that in type IIa (impurity-free) diamond23. These properties allow the simultaneous exploitation of both high sensitivity and nanometre resolution in diamond-based emergent quantum technologies24.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanodiamond size and NV coherence statistics.
Figure 2: Universal dynamical decoupling in nanodiamonds.
Figure 3: Nitrogen–vacancy magnetometry on the spin reservoir.
Figure 4: Coherent control and motional averaging of reservoir spins.

Similar content being viewed by others

References

  1. Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).

    Article  CAS  Google Scholar 

  2. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  CAS  Google Scholar 

  3. Hanson, R. & Awschalom, D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  CAS  Google Scholar 

  4. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  5. Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Article  CAS  Google Scholar 

  6. Maurer, P. et al. Room-temperature quantum bit memory exceeding one second. Science 335, 1283–1286 (2013).

    Google Scholar 

  7. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

    Article  CAS  Google Scholar 

  8. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  CAS  Google Scholar 

  9. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  10. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  11. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  12. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  13. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  14. Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    Article  CAS  Google Scholar 

  15. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  16. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 382–387 (2009).

    Article  Google Scholar 

  17. Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

    Article  Google Scholar 

  18. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Ultralong spin coherence time in isotopically engineered diamond. Nature Commun. 4, 1734 (2013).

    Article  Google Scholar 

  19. Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    Article  CAS  Google Scholar 

  20. Laraoui, A., Hodges, J. S. & Meriles, C. A. Nitrogen–vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Nano Lett. 12, 3477–3482 (2012).

    Article  CAS  Google Scholar 

  21. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  CAS  Google Scholar 

  22. De Lange, G et al. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep. 2, 382 (2012).

    Article  Google Scholar 

  23. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

  24. Acosta, V. & Hemmer, P. Nitrogen–vacancy centres: Physics and applications. Mater. Res. Soc. Bull. 38, 127–167 (2013).

    Article  CAS  Google Scholar 

  25. Wrachtrup, J., von Borczyskowski, C., Bernard, J., Orritt, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    Article  CAS  Google Scholar 

  26. De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  CAS  Google Scholar 

  27. Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    Article  CAS  Google Scholar 

  28. Wang, Z-H. & Takahashi, S. Spin decoherence and electron spin bath noise of a nitrogen-vacancy centre in diamond. Phys. Rev. B 87, 115122 (2013).

    Article  Google Scholar 

  29. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  CAS  Google Scholar 

  30. Van Wyk, J. A., Reynhardt, E. C., High, G. L. & Kiflawi, I. The dependences of ESR line widths and spin–spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond. J. Phys. D 30, 1790–1793 (1997).

    Article  Google Scholar 

  31. Caneva, T., Montangero, S., Lukin, M. D. & Calarco, T. Noise-resistant optimal spin squeezing via quantum control. Preprint at http://arxiv.org/abs/1304.7195 (2013).

Download references

Acknowledgements

We gratefully acknowledge financial support by the University of Cambridge, the European Research Council (FP7/2007-2013)/ERC Grant agreement no. 209636, and the FP7 Marie Curie Initial Training Network S3NANO. We thank I. Aharonovich and NaBond for providing the materials, T. Muller, S. Topliss and Y. Alaverdyan for technical assistance and F. Jelezko, R. Hanson and C. Degen for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of the experiments, discussed the results and wrote the manuscript. H.S.K. and D.M.K. performed the measurements and data analysis.

Corresponding authors

Correspondence to Helena S. Knowles or Mete Atatüre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, H., Kara, D. & Atatüre, M. Observing bulk diamond spin coherence in high-purity nanodiamonds. Nature Mater 13, 21–25 (2014). https://doi.org/10.1038/nmat3805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing