Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous nucleation of organic crystals mediated by single-molecule templates

Abstract

Fundamental understanding of how crystals of organic molecules nucleate on a surface remains limited1,2,3 because of the difficulty of probing rare events at the molecular scale. Here we show that single-molecule templates on the surface of carbon nanohorns can nucleate the crystallization of two organic compounds from a supersaturated solution by mediating the formation of disordered and mobile molecular nanoclusters on the templates. Single-molecule real-time transmission electron microscopy indicates that each nanocluster consists of a maximum of approximately 15 molecules, that there are fewer nanoclusters than crystals in solution, and that in the absence of templates physisorption, but not crystal formation, occurs. Our findings suggest that template-induced heterogeneous nucleation mechanistically resembles two-step homogeneous nucleation4,5,6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Y′–CNH-driven crystallization of 1,3,5-tris(4-bromophenyl) benzene (Y).
Figure 2: SMRT-TEM images of Y′–CNH and precursor clusters of Y taken from the Supplementary Movies together with a molecular model of a plausible structure of clusters and its TEM simulation.
Figure 3: Size of needle crystals and clusters of Y on Y′–CNH.
Figure 4: Nucleation on a reactive surface.

Similar content being viewed by others

References

  1. Markov, I. V. Crystal Growth for Beginners 2nd edn (World Scientific, 2002).

    Google Scholar 

  2. Sear, R. P. Nucleation: Theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 19, 033101 (2007).

    Article  Google Scholar 

  3. Sommerdijk, N. A. J. M. & de With, G. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 108, 4499–4550 (2008).

    Article  CAS  Google Scholar 

  4. Ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  Google Scholar 

  5. Vekilov, P. G. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 4, 671–685 (2004).

    Article  CAS  Google Scholar 

  6. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  CAS  Google Scholar 

  7. Vekilov, P. G. Nucleation. Cryst. Growth Des. 10, 5007–5019 (2010).

    Article  CAS  Google Scholar 

  8. Koshino, M. et al. Imaging single molecules in motion. Science 316, 853 (2007).

    Article  CAS  Google Scholar 

  9. Nakamura, E. in Chemistry of Nanocarbons (eds Akasaka, T., Wudl, F. & Nagase, S.) 405–412 (Wiley-VCH, 2010).

    Book  Google Scholar 

  10. Iijima, S. et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, 165–170 (1999).

    Article  CAS  Google Scholar 

  11. Isobe, H. et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew. Chem. Int. Ed. 45, 6676–6680 (2006).

    Article  CAS  Google Scholar 

  12. Nakamura, E. et al. Imaging of conformational change of biotinylated triamide molecules covalently bonded to carbon nanotube surface. J. Am. Chem. Soc. 130, 7808–7809 (2008).

    Article  CAS  Google Scholar 

  13. Hashimoto, S. et al. Anomaly of CH4 molecular assembly confined in single-wall carbon nanohorn spaces. J. Am. Chem. Soc. 133, 2022–2024 (2011).

    Article  CAS  Google Scholar 

  14. Beltran, L. M. C., Cui, C., Leung, D. H., Xu, J. & Hollander, F. J. 1,3,5-Tris(p-bromophenyl)benzene. Acta Cryst. E58, o782–o783 (2002).

    Google Scholar 

  15. Solin, N. et al. Imaging of aromatic amide molecules in motion. Chem. Lett. 36, 1208–1209 (2007).

    Article  CAS  Google Scholar 

  16. Trevius, E. B. Precrystallization state in salt aqueous solutions. Crystallogr. Rep. 46, 1039–1045 (2001).

    Article  Google Scholar 

  17. Lutsko, J. & Nicolis, G. Theoretical evidence for a dense fluid precursor to crystallization. Phys. Rev. Lett. 96, 046102 (2006).

    Article  Google Scholar 

  18. Chattopadhyay, S. et al. SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst. Growth Des. 5, 523–527 (2005).

    Article  CAS  Google Scholar 

  19. Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    Article  CAS  Google Scholar 

  20. Gibbs, J. W. On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Sci. 3, 108–248 (1876).

    Google Scholar 

  21. Yau, S-T. & Vekilov, P. G. Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization. J. Am. Chem. Soc. 123, 1080–1089 (2001).

    Article  CAS  Google Scholar 

  22. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  CAS  Google Scholar 

  23. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  CAS  Google Scholar 

  24. Guo, Y. et al. Ultrastable nanostructured polymer glass. Nature Mater. 11, 337–343 (2012).

    Article  CAS  Google Scholar 

  25. Filobelo, L. F., Galkin, O. & Vekilov, P. G. Spinodal for the solution-to-crystal phase transformation. J. Chem. Phys. 123, 014904 (2005).

    Article  Google Scholar 

  26. Nakamura, E. et al. Electron microscopic imaging of a single group 8 metal atom catalyzing C–C bond reorganization of fullerenes. J. Am. Chem. Soc. 133, 14151–14153 (2011).

    Article  CAS  Google Scholar 

  27. Koshino, M., Solin, N., Tanaka, T., Isobe, H. & Nakamura, E. Imaging of the passage of a single hydrocarbon chain through a nanopore. Nature Nanotech. 3, 595–597 (2008).

    Article  CAS  Google Scholar 

  28. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-Tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 4456–4458 (2009).

  29. Matsuo, Y. et al. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J. Am. Chem. Soc. 131, 16048–16050 (2009).

    Article  CAS  Google Scholar 

  30. Diao, Y., Myerson, A. S., Hatton, T. A. & Trout, B. L. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 27, 5324–5334 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by KAKENHI on Specially Promoted Research (22000008) to E.N. and Innovative Areas ‘Coordination Programming’ (Area 2107, 24108710) to K.H. from MEXT, Japan. T.H. thanks the Japan Society for Promotion of Science for a predoctoral fellowship. The CNH particles for the synthesis of amino–CNH were provided by M. Yudasaka.

Author information

Authors and Affiliations

Authors

Contributions

E.N. conceived the study and co-wrote the paper with K.H. T.H. and K.H. performed the macro- and microscopic experiments and L.L. conceived the macroscopic experiments. M.K. and Y.N. performed the SMRT-TEM imaging, and interpreted the data with K.S., K.H., E.N. and T.H. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Eiichi Nakamura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2253 kb)

Supplementary Information

Supplementary Movie S1 (MOV 204 kb)

Supplementary Information

Supplementary Movie S2 (MOV 467 kb)

Supplementary Information

Supplementary Movie S3 (MOV 66 kb)

Supplementary Information

Supplementary Movie S4 (MOV 535 kb)

Supplementary Information

Supplementary Movie S5 (MOV 655 kb)

Supplementary Information

Supplementary Movie S6 (MOV 183 kb)

Supplementary Information

Supplementary Movie S7 (MOV 3704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harano, K., Homma, T., Niimi, Y. et al. Heterogeneous nucleation of organic crystals mediated by single-molecule templates. Nature Mater 11, 877–881 (2012). https://doi.org/10.1038/nmat3408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing