Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane

Abstract

Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis1,2,3,4,5,6. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms7,8,9. Here, we show that size-preselected Pt8−10 clusters stabilized on high-surface-area supports are 40–100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes10,11.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depiction of the catalytic system.
Figure 2: Catalyst activity and selectivity.
Figure 3: Reaction path.
Figure 4: Energy barriers of bond breaking.

Similar content being viewed by others

References

  1. Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994).

    Article  CAS  Google Scholar 

  2. Gates, B. C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).

    Article  CAS  Google Scholar 

  3. Argo, A. M., Odzak, J. F., Lai, F. S. & Gates, B. C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 415, 623–623 (2002).

    Article  CAS  Google Scholar 

  4. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  Google Scholar 

  5. Campbell, C. T. The active site in nanoparticle gold catalysis. Science 306, 234–235 (2004).

    Article  CAS  Google Scholar 

  6. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  Google Scholar 

  7. Lemire, C., Meyer, R., Shaikhutdinov, S. & Freund, H.-J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Ed. 43, 118–121 (2004).

    Article  Google Scholar 

  8. Wei, J. & Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 108, 4094–4103 (2004).

    Article  CAS  Google Scholar 

  9. Hvolbaek, B. et al. Catalytic activity of Au nanoparticles. Nano Today 2, 14–18 (2007).

    Article  Google Scholar 

  10. Hutchings, G. J., Scurrell, M. S. & Woodhouse, J. R. Oxidative coupling of methane using oxide catalysts. Chem. Soc. Rev. 18, 251–283 (1989).

    Article  CAS  Google Scholar 

  11. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–509 (2002).

    Article  CAS  Google Scholar 

  12. Cavani, F., Ballarini, N. & Cericola, A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 127, 113–131 (2007).

    Article  CAS  Google Scholar 

  13. Benz, L. et al. Landing of size-selected Agn+ clusters on single crystal TiO2 (110)-(1×1) surfaces at room temperature. J. Chem. Phys. 122, 081102 (2005).

    Article  Google Scholar 

  14. Lee, S., Fan, C., Wu, T. & Anderson, S. L. CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J. Am. Chem. Soc. 126, 5682–5683 (2004).

    Article  CAS  Google Scholar 

  15. Winans, R. E. et al. Reactivity of supported platinum nanoclusters studied by in situ GISAXS: Clusters stability under hydrogen. Top. Catal. 39, 145–149 (2006).

    Article  CAS  Google Scholar 

  16. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  17. Sadykov, V. A. et al. Oxidative dehydrogenation of propane over monoliths at short contact times. Catal. Today 61, 93–99 (2000).

    Article  CAS  Google Scholar 

  18. Pellin, M. J. et al. Mesoporous catalytic membranes: Synthetic control of pore size and wall composition. Catal. Lett. 102, 127–130 (2005).

    Article  CAS  Google Scholar 

  19. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  20. Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Cluster chemistry and dynamics special feature: Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. 103, 10577–10583 (2006).

    Article  CAS  Google Scholar 

  21. Xu, Y., Shelton, W. A. & Schneider, W. F. Thermodynamic equilibrium compositions, structures, and reaction energies of PtxOy (x=1–3) clusters predicted from first principles. J. Phys. Chem. B 110, 16591–16599 (2006).

    Article  CAS  Google Scholar 

  22. Argyle, M. D., Chen, K., Bell, A. T. & Iglesia, E. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J. Catal. 208, 139–149 (2002).

    Article  CAS  Google Scholar 

  23. Redfern, P. C. et al. Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide. J. Phys. Chem. B 110, 8363–8371 (2006).

    Article  CAS  Google Scholar 

  24. Blomberg, M. R. A., Siegbahn, P. E. M., Nagashima, U. & Wennerberg, J. Theoretical study of the activation of alkane C–H and C–C bonds by different transition metals. J. Am. Chem. Soc. 113, 424–433 (1991).

    Article  CAS  Google Scholar 

  25. Xiao, L. & Wang, L. Methane activation on Pt and Pt4: A density functional theory study. J. Phys. Chem. B 111, 1657–1663 (2007).

    Article  CAS  Google Scholar 

  26. Cruz, A., Bertin, V., Poulain, E., Benitez, J. I. & Castillo, S. Theoretical study of the H2 reaction with a Pt4 (111) cluster. J. Chem. Phys. 120, 6222–6225 (2004).

    Article  CAS  Google Scholar 

  27. Lee, S. et al. Selective propene epoxidation on immobilized Au6−10 clusters: The effect of hydrogen and water on selectivity and activity. Angew. Chem. Int. Ed. (in the press, 2008) <http://dx.doi.org/10.1002/anie.200804154>.

  28. Yu, C., Xu, H., Ge, Q. & Li, W. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. J. Mol. Catal. A 266, 80–87 (2007).

    Article  CAS  Google Scholar 

  29. Silberova, B., Fathi, M. & Holmen, A. Oxidative dehydrogenation of ethane and propane at short contact time. Appl. Catal. A 276, 17–28 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at Argonne National Laboratory was supported by the US Department of Energy, BES-Chemical Sciences, BES-Materials Sciences, and BES-Scientific User Facilities under Contract DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. S.V. gratefully acknowledges the support by the Air Force Office of Scientific Research. We acknowledge grants of computer time at the Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the Molecular Science Computing Facility (MSCF) at Pacific Northwest National Laboratory. The authors are indebted to E. Iglesia and P. Stair for valuable discussions, A. Holmen for providing the exact dimensions of the monolith used in their studies of Pt-based catalysts and thank J. Moore for carrying out X-ray photoemission spectroscopy analysis of the Pt/AAO sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Vajda or Larry A. Curtiss.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajda, S., Pellin, M., Greeley, J. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Mater 8, 213–216 (2009). https://doi.org/10.1038/nmat2384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing