Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning selectivity in catalysis by controlling particle shape

Abstract

A catalytic process for the selective formation of cis olefins would help minimize the production of unhealthy trans fats during the partial hydrogenation of edible oils. Here we report on the design of such a process on the basis of studies with model systems. Temperature programmed desorption data on single crystals showed that the isomerization of trans olefins to their cis counterparts is promoted by (111) facets of platinum, and that such selectivity is reversed on more open surfaces. Quantum mechanics calculations suggested that the extra stability of cis olefins seen on hydrogen-saturated Pt(111) surfaces may be due to a lesser degree of surface reconstruction, a factor found to be significant in the adsorption on close-packed platinum surfaces. Kinetic data using catalysts made out of dispersed tetrahedral Pt nanoparticles corroborated the selective promotion of the trans-to-cis isomerization on the (111) facets of the metal. Our work provides an example for how catalytic selectivity may be controlled by controlling the shape of the catalytic particles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of H–D exchange and cis–trans isomerization reactions in olefins.
Figure 2: Partition of the energies of π adsorption of trans- and cis-2-butene on H-saturated Pt(111) surfaces, as estimated by density functional theory (DFT) calculations.
Figure 3: TPD spectra for cis- and trans-2-butene adsorbed on four different deuterium-saturated platinum single-crystal surfaces.
Figure 4: Schematic representation of the steps used in the preparation of the catalysts used in our studies, which consist of tetrahedral-shaped platinum particles dispersed onto a high-surface-area silica xerogel support.
Figure 5: Kinetic data for the isomerization of cis- and trans-2-butene promoted by the tetrahedral Pt–xerogel SiO2 catalysts described in Fig. 4.
Figure 6: High-resolution TEM images and statistics on the size and shape of tetrahedral Pt particles.

References

  1. Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. A108, 105–111 (1925).

    Article  Google Scholar 

  2. Sinfelt, J. H. Specificity in catalytic hydrogenolysis by metals. Adv. Catal. 23, 91–119 (1973).

    CAS  Google Scholar 

  3. Clarke, J. K. A. & Rooney, J. J. Stereochemical approach to mechanisms of hydrocarbon reactions on metal catalysts. Adv. Catal. 25, 125–183 (1976).

    CAS  Google Scholar 

  4. Bennett, C. O. & Che, M. Some geometric aspects of structure sensitivity. J. Catal. 120, 293–302 (1989).

    Article  CAS  Google Scholar 

  5. Ertl, G. Surface science and catalysis—studies on the mechanism of ammonia synthesis: The P. H. Emmett Award address. Catal. Rev. Sci. Eng. 21, 201–223 (1980).

    Article  CAS  Google Scholar 

  6. Somorjai, G. A. & Materer, N. Surface structures in ammonia synthesis. Top. Catal. 1, 215–231 (1994).

    Article  CAS  Google Scholar 

  7. Simopoulos, A. P. in Handbook of Lipids in Human Nutrition (ed. Spiller, G. A.) 91–99 (CRC Press, 1996).

    Google Scholar 

  8. Scarbrough, F. E. Some food and drug administration perspectives of fat and fatty acids. Am. J. Clin. Nutr. 65, 1578S–1580S (1997).

    Article  CAS  Google Scholar 

  9. Mercier, C. & Chabardes, P. Organometallic chemistry in industrial vitamin A and vitamin E synthesis. Pure Appl. Chem. 66, 1509–1518 (1994).

    Article  CAS  Google Scholar 

  10. Rodriguez-Amaya, D. B. Food carotenoids: Analysis, composition and alterations during storage and processing of foods. Forum Nutr. 56, 35–37 (2003).

    CAS  Google Scholar 

  11. Dugave, C. & Demange, L. Cis–trans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 103, 2475–2532 (2003).

    Article  CAS  Google Scholar 

  12. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: Recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  13. Schlatter, J. C. & Boudart, M. Hydrogenation of ethylene on supported platinum. J. Catal. 24, 482–492 (1972).

    Article  CAS  Google Scholar 

  14. Dautzenberg, F. M. & Platteeuw, J. C. On the effect of metal particle size on the isomerization of n-hexane over supported platinum catalysts. J. Catal. 24, 364–365 (1972).

    Article  CAS  Google Scholar 

  15. Gates, B. C., Katzer, J. R. & Schuit, G. C. A. Chemistry of Catalytic Processes (McGraw-Hill, 1979).

    Google Scholar 

  16. Yoshitake, H. & Iwasawa, Y. Electronic metal support interaction in platinum catalysts under deuterium–ethene reaction conditions and the microscopic nature of the active sites. J. Phys. Chem. 96, 1329–1334 (1992).

    Article  CAS  Google Scholar 

  17. Lee, I. & Zaera, F. Selectivity in platinum-catalyzed cis–trans carbon–carbon double-bond isomerization. J. Am. Chem. Soc. 127, 12174–12175 (2005).

    Article  CAS  Google Scholar 

  18. Polanyi, M. & Horiuti, J. Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 30, 1164–1172 (1934).

    Article  Google Scholar 

  19. Zaera, F. On the mechanism for the hydrogenation of olefins on transition-metal surfaces: The chemistry of ethylene on Pt(111). Langmuir 12, 88–94 (1996).

    Article  CAS  Google Scholar 

  20. Bond, G. C. in Metal-Catalysed Reactions of Hydrocarbons (eds Twigg, M. V. & Spencer, M. S.) (Springer, 2005).

    Google Scholar 

  21. Lee, I. & Zaera, F. Thermal chemistry of C4 hydrocarbons on Pt(111): Mechanism for double-bond isomerization. J. Phys. Chem. B 109, 2745–2753 (2005).

    Article  CAS  Google Scholar 

  22. Lee, I. & Zaera, F. Infrared spectroscopy characterization of the chemistry of C4 hydrocarbons on Pt(111) single-crystal surfaces. J. Phys. Chem. C 111, 10062–10072 (2007).

    Article  CAS  Google Scholar 

  23. Veldsink, J. W., Bouma, M. J., Schoon, N.-H. & Beenackers, A. A. C. M. Heterogeneous hydrogenation of vegetable oils: A literature review. Catal. Rev. Sci. Eng. 39, 253–318 (1997).

    Article  CAS  Google Scholar 

  24. Gonzalez-Marcos, M. P., Gutierrez-Ortiz, J. I., De elguea, C. G.-O., Alvarez, J. I. & Gonzalez-Velasco, J. R. Control of the product distribution in the hydrogenation of vegetable oils over nickel on silica catalysts. Can. J. Chem. Eng. 76, 927–935 (1998).

    Article  CAS  Google Scholar 

  25. Delbecq, F. & Zaera, F. Origin of the selectivity for trans-to-cis isomerization in 2-butene adsorbed on Pt(111) single crystal surfaces. J. Am. Chem. Soc. 130, 14924–14925 (2008).

    Article  CAS  Google Scholar 

  26. Lee, I., Nguyen, M. K., Morton, T. H. & Zaera, F. Thermal chemistry of 1,4-difluoro-2-butenes on Pt(111) single crystal surfaces. J. Phys. Chem. C 112, 14117–14123 (2008).

    Article  CAS  Google Scholar 

  27. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996).

    Article  CAS  Google Scholar 

  28. Lee, I., Morales, R., Albiter, M. A. & Zaera, F. Synthesis of heterogeneous catalysts with well-shaped platinum particles to control reaction selectivity. Proc. Natl Acad. Sci. 105, 15241–15246 (2008).

    Article  CAS  Google Scholar 

  29. Song, H. et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006).

    Article  CAS  Google Scholar 

  30. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  32. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  34. Valcárcel, A., Clotet, A., Ricart, J. M., Delbecq, F. & Sautet, P. Comparative DFT study of the adsorption of 1,3-butadiene, 1-butene and 2-cis/trans-butenes on the Pt(111) and Pd(111) surfaces. Surf. Sci. 549, 121–133 (2004).

    Article  Google Scholar 

  35. Valcárcel, A., Clotet, A., Ricart, J. M., Delbecq, F. & Sautet, P. Selectivity control for the catalytic 1,3-butadiene hydrogenation on Pt(111) and Pd(111) surfaces: Radical versus closed-shell intermediates. J. Phys. Chem. B 109, 14175–14182 (2005).

    Article  Google Scholar 

  36. Wilson, J. et al. Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces. Phys. Chem. Chem. Phys. 9, 3830–3852 (2007).

    Article  CAS  Google Scholar 

  37. Morales, R. & Zaera, F. Thermal chemistry of 1-methyl-1-cyclohexene and methylene cyclohexane on Pt(111) single crystal surfaces. J. Phys. Chem. C 111, 18367–18375 (2007).

    Article  CAS  Google Scholar 

  38. Loaiza, A., Xu, M. & Zaera, F. On the mechanism of the H–D exchange reaction in ethane over platinum catalysts. J. Catal. 159, 127–139 (1996).

    Article  CAS  Google Scholar 

  39. Loaiza, A. & Zaera, F. Regiospecificity in deuterium labeling determined by mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1366–1373 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the US National Science Foundation. We also wish to thank E. Montecino-Rodríguez for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.L. carried out and helped analyse most of the experimental work; F.D. carried out and helped design the quantum mechanics calculations; R.M. and M.A.A. helped in the preparation and characterization of the supported catalysts; F.Z., the senior scientist, conceived and designed the study, helped analyse the data and wrote the paper.

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, I., Delbecq, F., Morales, R. et al. Tuning selectivity in catalysis by controlling particle shape. Nature Mater 8, 132–138 (2009). https://doi.org/10.1038/nmat2371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing