Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superlenses to overcome the diffraction limit

Abstract

The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical lithography and data storage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A slab of negative-refractive-index medium acts as a perfect lens.
Figure 2: Near-field optical superlenses.
Figure 3: Far-field optical superlens.
Figure 4: Optical hyperlens and magnifying superlens.

Similar content being viewed by others

References

  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi-USSR 10, 509–514 (1968).

    Article  Google Scholar 

  2. Pendry, J. B. et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  CAS  Google Scholar 

  3. Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  4. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  CAS  Google Scholar 

  5. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  6. Smith, D. R. et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2003).

    Article  Google Scholar 

  7. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  8. Bayindir, M. et al. Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81, 120–122 (2002).

    Article  CAS  Google Scholar 

  9. Parazzoli, C. G. et al. Experimental verification and simulation of negative index of refraction using Snell's Law. Phys. Rev. Lett. 90, 107401 (2003).

    Article  CAS  Google Scholar 

  10. Greegor, R. B., Parazzoli, C. G. & Tanielian, M. H. Origin of dissipative losses in negative index of refraction materials. Appl. Phys. Lett. 82, 2356–2358 (2003).

    Article  CAS  Google Scholar 

  11. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  12. Smith, D. R. et al. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

    Article  CAS  Google Scholar 

  13. Fang, N. & Zhang, X. Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 82, 161–163 (2003).

    Article  CAS  Google Scholar 

  14. Podolskiy, V. A. Optimizing the superlens: manipulating geometry to enhance the resolution. Appl. Phys. Lett. 87, 231113 (2005).

    Article  Google Scholar 

  15. Larkin, I. A. & Stockman, M. I. Imperfect perfect lens. Nano Lett. 5, 339–343 (2005).

    Article  CAS  Google Scholar 

  16. Liu, Z. et al. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003).

    Article  CAS  Google Scholar 

  17. Fang, N., Liu, Z., Yen, T. J. & Zhang, X. Regenerating evanescent waves from a silver superlens. Opt. Express 11, 682–687 (2003).

    Article  CAS  Google Scholar 

  18. Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

    Article  Google Scholar 

  19. Popa, B. I. & Cummer S. A. Direct measurement of evanescent wave enhancement inside passive metamaterials. Phys. Rev. E. 73, 016617 (2006).

    Article  Google Scholar 

  20. Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett. 90, 137401 (2003).

    Article  Google Scholar 

  21. Lagarkov, A. N. & Kissel, V. N. Near-perfect imaging in a focusing system based on a left-handed-material plate. Phys. Rev. Lett. 92, 077401 (2004).

    Article  CAS  Google Scholar 

  22. Fang, N. et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  23. Lee, H. et al. Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005).

    Article  Google Scholar 

  24. Melville, D. & Blaikie, R. Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).

    Article  CAS  Google Scholar 

  25. Shamonina, E. et al. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Electron. Lett. 37, 1243–1244 (2001).

    Article  Google Scholar 

  26. Ramakrishna, S. A. et al. Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003).

    Article  CAS  Google Scholar 

  27. Belov, P. A. & Hao, Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006).

    Article  Google Scholar 

  28. Wood, B., Pendry, J. B. & Tsai, D. P. Directed subwavelength imaging using a layered metal–dielectric system. Phys. Rev. B 74, 115116 (2006).

    Article  Google Scholar 

  29. Taubner, T. et al. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    Article  CAS  Google Scholar 

  30. Notomi, M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).

    Article  CAS  Google Scholar 

  31. Luo, C. et al. All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002).

    Article  Google Scholar 

  32. Luo, C. et al. Subwavelength imaging in photonic crystal. Phys. Rev. B 68, 045115 (2003).

    Article  Google Scholar 

  33. Efros, A. L. & Pokrovsky, A. L. Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129, 643–649 (2004).

    Article  CAS  Google Scholar 

  34. Foteinopoulou, S. & Soukoulis, C. M. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B 67, 235107 (2003).

    Article  Google Scholar 

  35. Cubukcu, E. et al. Negative refraction by photonic crystals. Nature 423, 604–605 (2003).

    Article  CAS  Google Scholar 

  36. Parimi, V. P. et al. Imaging by flat lens using negative refraction. Nature 426, 404 (2003).

    Article  CAS  Google Scholar 

  37. Cubukcu, E. et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003).

    Article  CAS  Google Scholar 

  38. Li, Z. Y. & Lin, L. L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys. Rev. B. 68, 245110 (2003).

    Article  Google Scholar 

  39. Shvets, G. & Urzhumov, Y. A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonance. Phys. Rev. Lett. 93, 243902 (2004).

    Article  Google Scholar 

  40. Schonbrun, E. et al. Wave front evolution of negatively refracted waves in a photonic crystal. Appl. Phys. Lett. 90, 041113 (2007).

    Article  Google Scholar 

  41. Podolskiy, V. A. & Narimanov, E. E. Near-sighted superlens. Opt. Lett. 30, 75–77 (2005).

    Article  Google Scholar 

  42. Durant, S. et al. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 23, 2383–2392 (2006).

    Article  CAS  Google Scholar 

  43. Liu, Z. et al. Far-field optical superlens. Nano Lett. 7, 403–408 (2007).

    Article  CAS  Google Scholar 

  44. Liu, Z. et al. Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express 15, 6947–6954 (2007).

    Article  Google Scholar 

  45. Xiong, Y. et al. Tuning the far-field superlens: from UV to visible. Opt. Express 15, 7095–7102 (2007).

    Article  Google Scholar 

  46. Xiong, Y., Liu, Z., Sun, C. & Xiang, X. Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007).

    Article  CAS  Google Scholar 

  47. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  48. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  Google Scholar 

  49. Lee, H. et al. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express. 15, 15886–15891 (2007).

    Article  CAS  Google Scholar 

  50. Pendry, J. B. & Ramakrishna, S. A. Near-field lenses in two dimensions. J. Phys. Condens. Matter 14, 8463–8479 (2002).

    Article  CAS  Google Scholar 

  51. Pendry, J. B. Perfect cylindrical lenses. Opt. Express 11, 755–760 (2003).

    Article  CAS  Google Scholar 

  52. Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  Google Scholar 

  53. Smolyaninov, I. I., Huang, Y. J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

    Article  CAS  Google Scholar 

  54. Drezet, A., Hohenau, A. & Krenn, J. R. Comment on “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons”. Phys. Rev. Lett. 98, 209730 (2007).

    Article  Google Scholar 

  55. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  56. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  Google Scholar 

  57. Dolling, G. et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  CAS  Google Scholar 

  58. Dollin g, G. et al. Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32, 53–55 (2007).

    Article  CAS  Google Scholar 

  59. Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

    Article  CAS  Google Scholar 

  60. Grigorenko, A. Negative refractive index in artificial metamaterials. Opt. Lett. 31, 2483–2485 (2006).

    Article  CAS  Google Scholar 

  61. Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  CAS  Google Scholar 

  62. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    Article  CAS  Google Scholar 

  63. Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

    Article  Google Scholar 

  64. Yang, S. X. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  Google Scholar 

  65. Ambati, M. et al. Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007).

    Article  Google Scholar 

  66. Lu, M. et al. Negative birefraction of acoustic waves in a sonic crystal. Nature Mater. 6, 744–748 (2007).

    Article  CAS  Google Scholar 

  67. Christensen, J. Collimation of sound assisted by acoustic surface waves. Nature Phys. 3, 851–852 (2007).

    Article  CAS  Google Scholar 

  68. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF NSEC award DMI-0327077, ARO MURI award 50432-PH-MUR and AFOSR MURI award FA9550-04-1-0434.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Liu, Z. Superlenses to overcome the diffraction limit. Nature Mater 7, 435–441 (2008). https://doi.org/10.1038/nmat2141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing