Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of the electric-field distribution in a light-emitting electrochemical cell

Abstract

The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time dependence of the in situ potential and electric-field profiles for Au/[Ru(bpy)3]2+(PF6)2/Au devices under 5 V operation, in which the [Ru(bpy)3]2+(PF6)2 is unpatterned.
Figure 2: Schematic diagram of the ionic space-charge effects in unpatterned and patterned Au/[Ru(bpy)3]2+(PF6)2/Au devices (not to scale).
Figure 3: Patterning [Ru(bpy)3]2+(PF6)2 with parylene.
Figure 4: Time dependence of the in situ potential and electric-field profiles for Au/[Ru(bpy)3]2+(PF6)2/Au devices under 5 V operation, in which the [Ru(bpy)3]2+(PF6)2 layer has been patterned to be restricted between the electrodes.
Figure 5: Simulation results for carrier and electric-field distributions in an LEEC.
Figure 6: Voltage dependence of potential and electric-field distributions and spatial profile of light emission.

Similar content being viewed by others

References

  1. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–815 (2005).

    Article  CAS  Google Scholar 

  2. Bruce, P. G. Solid State Electrochemistry (Cambridge Univ. Press, London, 1995).

    Google Scholar 

  3. Maier, J. Electrical sensing of complex gaseous species by making use of acid-base properties. Solid State Ion. 62, 105–111 (1993).

    Article  CAS  Google Scholar 

  4. Nilsson, D., Kugler, T., Svensson, P.-O. & Berggren, M. An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sensors Actuators B 86, 193–197 (2002).

    Article  CAS  Google Scholar 

  5. Gustafsson, J. C., Liedberg, B. & Inganäs, O. In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ion. 69, 145–152 (1994).

    Article  CAS  Google Scholar 

  6. Hibino, T. et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 288, 2031–2033 (2000).

    Article  CAS  Google Scholar 

  7. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  8. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    Article  CAS  Google Scholar 

  9. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  10. Bernards, D. A., Flores-Torres, S., Abruña, H. D. & Malliaras, G. G. Observation of electroluminescence and photovoltaic response in ionic junctions. Science 313, 1416–1419 (2006).

    Article  CAS  Google Scholar 

  11. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  CAS  Google Scholar 

  12. Riess, I. & Cahen, D. Analysis of light emitting polymer electrochemical cells. J. Appl. Phys. 82, 3147–3151 (1997).

    Article  CAS  Google Scholar 

  13. Smith, D. L. Steady state model for polymer light-emitting electrochemical cells. J. Appl. Phys. 81, 2869–2880 (1997).

    Article  CAS  Google Scholar 

  14. Manzanares, J. A., Reiss, H. & Heeger, A. J. Polymer light-emitting electrochemical cells: a theoretical study of junction formation under steady-state conditions. J. Phys. Chem. B 102, 4327–4336 (1998).

    Article  CAS  Google Scholar 

  15. deMello, J. C., Tessler, N., Graham, S. C. & Friend, R. H. Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 57, 12951 (1998).

    Article  CAS  Google Scholar 

  16. deMello, J. C. Interfacial feedback dynamics in polymer light-emitting electrochemical cells. Phys. Rev. B 66, 235210 (2002).

    Article  Google Scholar 

  17. Gao, J., Heeger, A. J., Campbell, I. H. & Smith, D. L. Direct observation of junction formation in polymer light-emitting electrochemical cells. Phys. Rev. B 59, R2482–R2485 (1999).

    Article  CAS  Google Scholar 

  18. Johansson, T., Mammo, W., Andersson, M. R. & Inganas, O. Light-emitting electrochemical cells from oligo(ethylene oxide)-substituted polythiophenes: Evidence for in situ doping. Chem. Mater. 11, 3133–3139 (1999).

    Article  CAS  Google Scholar 

  19. deMello, J. C., Halls, J. J. M., Graham, S. C., Tessler, N. & Friend, R. H. Electric field distribution in polymer light-emitting electrochemical cells. Phys. Rev. Lett. 85, 421–424 (2000).

    Article  CAS  Google Scholar 

  20. Moderegger, E. Comparison of the internal field distribution in light-emitting diodes and light-emitting electrochemical cells. Adv. Mater. 12, 825–827 (1996).

    Article  Google Scholar 

  21. Edman, L., Summers, M. A., Buratto, S. K. & Heeger, A. J. Polymer light-emitting electrochemical cells: Doping, luminescence, and mobility. Phys. Rev. B 70, 115212 (2004).

    Article  Google Scholar 

  22. Dick, D. J., Heeger, A. J., Yang, Y. & Pei, Q. B. Imaging the structure of the p-n junction in polymer light-emitting electrochemical cells. Adv. Mater. 8, 985–987 (1996).

    Article  CAS  Google Scholar 

  23. Gao, J. & Dane, J. Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing. Appl. Phys. Lett. 83, 3027–3029 (2003).

    Article  CAS  Google Scholar 

  24. Gao, J. & Dane, J. Visualization of electrochemical doping and light-emitting junction formation in conjugated polymer films. Appl. Phys. Lett. 84, 2778–2780 (2003).

    Article  Google Scholar 

  25. Robinson, N. D., Shin, J.-H., Berggren, M. & Edman, L. Doping front propagation in light-emitting electrochemical cells. Phys. Rev. B 74, 155210 (2006).

    Article  Google Scholar 

  26. Mauthner, G. et al. Elimination of defect-induced color instabilities in polymer light-emitting devices. J. Appl. Phys. 97, 063508 (2005).

    Article  Google Scholar 

  27. Pachler, P., Wenzl, F. P., Scherf, U. & Leising, G. The efficiency of light-emitting electrochemical cells. J. Phys. Chem. B 109, 6020–6024 (2005).

    Article  CAS  Google Scholar 

  28. Pachler, P., Wenzl, F. P., Scherf, U. & Leising, G. The impact of high bias voltages on the luminance characteristics of light-emitting electrochemical cells. Solid State Ion. 176, 1793–1796 (2005).

    Article  CAS  Google Scholar 

  29. Handy, E. S., Pal, A. J. & Rubner, M. F. Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex. 2. tris(bipyridyl)ruthenium(II) as a high-brightness emitter. J. Am. Chem. Soc. 121, 3525–3528 (1999).

    Article  CAS  Google Scholar 

  30. Gao, F. G. & Bard, A. J. Solid-state organic light-emitting diodes based on tris(2,2-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 122, 7426–7427 (2000).

    Article  CAS  Google Scholar 

  31. Rudmann, H. & Rubner, M. F. Single layer light-emitting devices with high efficiency and long lifetime based on tris(2,2 bipyridyl) ruthenium(II) hexafluorophosphate. J. Appl. Phys. 90, 4338–4345 (2001).

    Article  CAS  Google Scholar 

  32. Buda, M., Kalyuzhny, G. & Bard, A. J. Thin-film solid-state electroluminescent devices based on tris(2,2-bipyridine) ruthenium(II) complexes. J. Am. Chem. Soc. 124, 6090–6098 (2002).

    Article  CAS  Google Scholar 

  33. Bernhard, S., Gao, X., Malliaras, G. G. & Abruña, H. D. Efficient electroluminescent devices based on a chelated osmium(II) complex. Adv. Mater. 14, 433–436 (2002).

    Article  CAS  Google Scholar 

  34. Bernhard, S. et al. Electroluminescence in ruthenium(II) complexes. J. Am. Chem. Soc. 124, 13624–13628 (2002).

    Article  CAS  Google Scholar 

  35. Slinker, J. et al. Solid-state electroluminescent devices based on transition metal complexes. Chem. Commun. 2392–2399 (2003).

  36. Rudmann, H., Shimada, S. & Rubner, M. F. Operational mechanism of light-emitting devices based on Ru(II) complexes: Evidence for electrochemical junction formation. J. Appl. Phys. 94, 115–122 (2003).

    Article  CAS  Google Scholar 

  37. Gorodetsky, A. A. et al. Contact issues in electroluminescent devices from ruthenium complexes. Appl. Phys. Lett. 84, 807–809 (2004).

    Article  CAS  Google Scholar 

  38. Bernards, D. A. et al. Organic light-emitting devices with laminated top contacts. Appl. Phys. Lett. 84, 3675–3677 (2004).

    Article  CAS  Google Scholar 

  39. Bernards, D. A., Slinker, J. D., Malliaras, G. G., Flores-Torres, S. & Abruña, H. D. Cascaded light-emitting devices based on a ruthenium complex. Appl. Phys. Lett. 84, 4980–4982 (2004).

    Article  CAS  Google Scholar 

  40. Bolink, H. J., Cappelli, L., Coronado, E., Grätzel, M. & Nazeeruddin, M. K. Efficient and stable solid-state light-emitting electrochemical cell using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) hexafluorophosphate. J. Am. Chem. Soc. 128, 46–47 (2006).

    Article  CAS  Google Scholar 

  41. Slinker, J. D. et al. Direct 120 V, 60 Hz operation of an organic light emitting device. J. Appl. Phys. 99, 074502 (2006).

    Article  Google Scholar 

  42. Su, H.-C., Wu, C.-C., Fang, F.-C. & Wong, K.-T. Efficient solid-state host-guest light-emitting electrochemical cells based on cationic transition metal complexes. Appl. Phys. Lett. 89, 261118 (2006).

    Article  Google Scholar 

  43. Moran-Mirabal, J. M. et al. Electroluminescent electrospun nanofibers. Nano Lett. 7, 458–463 (2007).

    Article  CAS  Google Scholar 

  44. Slinker, J. D. et al. Electroluminescent devices from ionic transition metal complexes. J. Mater. Chem. (doi:10.1039/b704017b).

    Article  CAS  Google Scholar 

  45. Silveira, W. R. & Marohn, J. A. Microscopic view of charge injection in an organic semiconductor. Phys. Rev. Lett. 93, 116104 (2004).

    Article  Google Scholar 

  46. Silveira, W. R., Muller, E. M., Ng, T.-N., Dunlap, D. H. & Marohn, J. A. in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale Vol. II (eds Kalinin, S. V. & Gruverman, A.) 788–830 (Springer, New York, 2007).

    Book  Google Scholar 

  47. DeFranco, J. A., Schmidt, B. S., Lipson, M. & Malliaras, G. G. Photolithographic patterning of organic materials. Org. Elect. 7, 22–28 (2006).

    Article  CAS  Google Scholar 

  48. Ilic, B. & Craighead, H. G. Topographical patterning of chemically sensitive biological materials using a polymer based dry lift-off. Biomed. Microdev. 2, 317–322 (2000).

    Article  CAS  Google Scholar 

  49. Malliaras, G. G. & Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 83, 5399–5403 (1998).

    Article  CAS  Google Scholar 

  50. Scott, J. C. & Malliaras, G. G. Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115–119 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, the Center for NanoScale Systems and the New York State Office of Science, Technology and Academic Research (NYSTAR), and made possible by the use of the Cornell NanoScale Facility. J.D.S. was supported by a National Science Foundation Graduate Research Fellowship. Thanks are due to J. Blakely and D. Cahen for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Malliaras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slinker, J., DeFranco, J., Jaquith, M. et al. Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Mater 6, 894–899 (2007). https://doi.org/10.1038/nmat2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing