Abstract
Silica is the main component of the Earth's crust and is also of great relevance in many branches of materials science and technology. Its phase diagram is rather intricate and exhibits many different crystalline phases1,2,3,4,5,6. The reported propensity to amorphization and the strong influence on the outcome of the initial structure and of the pressurization protocol1,7 indicate the presence of metastability and large kinetic barriers. As a consequence, theory is also faced with great difficulties and our understanding of the complex transformation mechanisms is still very sketchy despite a large number of simulations8,9,10,11,12,13. Here, we introduce a substantial improvement of the metadynamics method14,15, which finally brings simulations in close agreement with experiments. We unveil the subtle and non-intuitive stepwise mechanism of the pressure-induced transformation of fourfold-coordinated α-quartz into sixfold-coordinated stishovite at room temperature. We also predict that on compression fourfold-coordinated coesite will transform into the post-stishovite α-PbO2-type phase. The new method is far more efficient than previous methods, and for the first time the study of complex structural phase transitions with many intermediates is within the reach of molecular dynamics simulations. This insight will help in designing new experimental protocols capable of steering the system towards the desired transition.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Hemley, R. J., Prewitt, C. T. & Kingma, K. J. Silica–Physical Behaviour, Geochemistry, and Materials Applications 41 (Rev. Mineral. Vol. 29, MSA, Washington DC, 1994).
Tsuchida, Y. & Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 347, 267–269 (1990).
Kingma, K. J., Hemley, R. J., Mao, H. K. & Veblen, D. R. New high-pressure transformation in α-quartz. Phys. Rev. Lett. 70, 3927–3930 (1993).
Dubrovinsky, L. S. et al. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 388, 362–365 (1997).
Haines, J., Léger, J. M., Gorelli, F. & Hanfland, M. Crystalline post-quartz phase in silica at high pressure. Phys. Rev. Lett. 87, 155503 (2001).
Kuwayama, Y., Hirose, K., Sata, N. & Ohishi, Y. The pyrite-type high-pressure form of silica. Science 309, 923–925 (2005).
Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).
Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339, 209–211 (1989).
Binggeli, N., Chelikowsky, J. R. & Wentzcovitch, R. M. Simulating the amorphization of α-quartz under pressure. Phys. Rev. B 49, 9336–9340 (1994).
Somayazulu, M. S., Sharma, S. M. & Sikka, S. K. Structure of a new high pressure phase in α-quartz determined by molecular dynamics studies. Phys. Rev. Lett. 73, 98–101 (1994).
Dean, D. W., Wentzcovitch, R. M., Keskar, N., Chelikowsky, J. R. & Binggeli, N. Pressure-induced amorphization in crystalline silica: Soft phonon modes and shear instabilities in coesite. Phys. Rev. B 61, 3303–3309 (2000).
Klug, D. D. et al. Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys. Rev. B 63, 104106 (2001).
Campañá, C., Müser, M. H., Tse, J. S., Herzbach, D. & Schöffel, P. Irreversibility of the pressure-induced phase transition of quartz and the relation between three hypothetical post-quartz phases. Phys. Rev. B 70, 224101 (2004).
Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).
Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys. Condens. Matter 11, 3833–3874 (1999).
Teter, D. M., Hemley, R. J., Kresse, G. & Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 80, 2145–2148 (1998).
Oganov, A. R., Gillan, M. J. & Price, G. D. Structural stability of silica at high pressures and temperatures. Phys. Rev. B 71, 064104 (2005).
Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).
Martoňák, R. et al. Simulation of structural phase transitions by metadynamics. Z. Kristallogr. 220, 489–498 (2005).
Ceriani, C. et al. Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys. Rev. B 70, 113403 (2004).
Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth's D′′ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005).
Raiteri, P., Martoňák, R. & Parrinello, M. Exploring polymorphism: the case of benzene. Angew. Chem. Int. Edn 44, 3769–3773 (2005).
van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).
Saika-Voivod, I., Sciortino, F., Grande, T. & Poole, P. H. Phase diagram of silica from computer simulation. Phys. Rev. E 70, 061507 (2004).
Choudhury, N. & Chaplot, S. L. Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2 . Phys. Rev. B 73, 094304 (2006).
Sowa, H. & Koch, E. Group-theoretical and geometrical considerations of the phase transition between the high-temperature polymorphs of quartz and tridymite. Acta Crystallogr. A 58, 327–333 (2002).
Hantsch, U. et al. Theoretical investigation of moganite. Eur. J. Mineral. 17, 21–30 (2005).
Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).
Acknowledgements
We would like to acknowledge stimulating discussions with M. Bernasconi as well as help from P. Raiteri and M. Valle.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary tables I, II and III (PDF 48 kb)
Rights and permissions
About this article
Cite this article
Martoňák, R., Donadio, D., Oganov, A. et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Mater 5, 623–626 (2006). https://doi.org/10.1038/nmat1696
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat1696