Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic structure and exchange coupling of Mn impurities in III–V semiconductors

Abstract

Dilute magnetic semiconductors are without doubt among the most interesting classes of magnetic materials. However, the nature of their electronic structure and magnetic exchange is far from understood, and important discrepancies exist between widely used phenomenological models and first-principles electronic-structure descriptions. Here we apply the ab initio self-interaction-corrected local-spin-density method to study the electronic structure of Mn-doped III–V semiconductors. For (GaMn)As, our results with the (d5+h) configuration agree with the Zener model description and predict pd exchange that is in good agreement with experiment. The ground state in (GaMn)N and (GaMn)P is the d4 configuration with no intrinsic carriers. If, however, holes are introduced extrinsically, carrier-mediated exchange is possible, but the pd exchange is predicted to be lower in p-type GaN, as compared with GaP and GaAs. Nevertheless, because of the smaller lattice constant, the estimated Curie temperature is higher than in (GaMn)As, at comparable doping levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The energy differences between different valence configurations of Mn d states.
Figure 2: The Mn-induced spin magnetic moments in Ga–V semiconductors.
Figure 3: The valence and conduction bands DOS in Mn-doped Ga–V semiconductors.
Figure 4: The spin-resolved DOS for Mn d 4 and d 5 configurations in GaN and GaAs semiconductors.
Figure 5: The estimated Curie temperatures for the Mn-doped Ga–V semiconductors.

Similar content being viewed by others

References

  1. Foxon, C. T. et al. The growth of high quality GaMnAs films by MBE. J. Mater. Sci.: Mater. El. 15, 727–731 (2004).

    Google Scholar 

  2. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  3. Ohno, H. et al. Electric field controle of ferromagnetism. Nature 408, 944–946 (2000).

    Article  Google Scholar 

  4. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

  5. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  Google Scholar 

  7. Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1950).

    Article  Google Scholar 

  8. Zener, C. Interaction between the d-shells in transition metals. III. Calculations of the Weiss factor in Fe, Co, and Ni. Phys. Rev. 83, 299–301 (1951).

    Article  Google Scholar 

  9. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. & Hori, H. Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire (0001) showing the ferromagnetic behavior at room temperature. J. Cryst. Growth 237–239, 1358–1362 (2002).

    Article  Google Scholar 

  10. Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M. & Köhl, F. Electronic structure of the neutral Manganese acceptor in gallium arsenide. Phys. Rev. Lett. 59, 240–243 (1987).

    Article  Google Scholar 

  11. Kreissl, J. et al. Neutral manganese acceptor in GaP: An electron-paramagnetic-resonance study. Phys. Rev. B 54, 10508–10515 (1996).

    Article  Google Scholar 

  12. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  13. Lee, B., Jungwirth, T. & MacDonald, A. H. Ferromagnetism in dilute magnetic semiconductor heterojunction systems. Semicond. Sci. Technol. 17, 393–403 (2002).

    Article  Google Scholar 

  14. Alvarez, G., Mayr, M. & Dagotto, E. Phase diagram of a model for dilute magnetic semiconductors beyond mean-field approximations. Phys. Rev. Lett. 89, 277202 (2002).

    Article  Google Scholar 

  15. Chattopadhyay, A., Sarma, S. D. & Millis, A. J. Transition temperature of ferromagnetic semiconductors: A dynamical mean field study. Phys. Rev. Lett. 87, 227202 (2001).

    Article  Google Scholar 

  16. von Barth, U. & Hedin, L. A local exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629–1642 (1972).

    Article  Google Scholar 

  17. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Article  Google Scholar 

  18. Kohn, W. & Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Article  Google Scholar 

  19. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  20. Kübler, J. Theory of Itinerant Electron Magnetism (International Series of Monographs on Physics, Vol. 106, Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  21. Sato, K. & Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367–376 (2002).

    Article  Google Scholar 

  22. Mahadevan, P. & Zunger, A. Ferromagnetism in Mn-doped GaAs due to substitutional-interstitial complexes. Phys. Rev. B 69, 115211 (2004).

    Article  Google Scholar 

  23. Temmerman, W. M., Svane, A., Szotek, Z. & Winter, H. in Electronic Density Functional Theory: Recent Progress and New Directions (eds Dobson, J. F., Vignale, G. & Das, M. P.) 327 (Plenum, New York, 1998).

    Book  Google Scholar 

  24. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  Google Scholar 

  25. Norman, M. R. & Koelling, D. D. Towards a Kohn-Sham potential via the optimzied effective-potential method. Phys. Rev. B 30, 5530–5540 (1984).

    Article  Google Scholar 

  26. Strange, P., Svane, A., Temmerman, W. M., Szotek, Z. & Winter, H. Understanding the valency of rearearths from first-principles theory. Nature 399, 756–758 (1999).

    Article  Google Scholar 

  27. Petit, L., Svane, A., Szotek, Z. & Temmerman, W. M. First-principles caulculations of PuO2±x . Science 301, 498–501 (2003).

    Article  Google Scholar 

  28. Temmerman, W. M., Winter, H., Szotek, Z. & Svane, A. Cu valency change induced by O doping in YBCO. Phys. Rev. Lett. 86, 2435–2438 (2001).

    Article  Google Scholar 

  29. Svane, A. & Gunnarsson, O. Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett. 65, 1148–1151 (1990).

    Article  Google Scholar 

  30. Szotek, Z., Temmerman, W. M. & Winter, H. Application of the self-interaction correction to transition-metal oxides. Phys. Rev. B 47, 4029–4032 (1993).

    Article  Google Scholar 

  31. Ködderitzsch, D. et al. Exchange interactions in NiO and at the NiO(100) surface. Phys. Rev. B 66, 064434 (2002).

    Article  Google Scholar 

  32. Edmonds, K. W. et al. Mn interstitial diffusion in (Ga,Mn)As. Phys. Rev. Lett. 92, 037201 (2004).

    Article  Google Scholar 

  33. Edmonds, K. W. et al. Ferromagnetic moment and antiferromagnetic coupling in (Ga,Mn)As thin films. Phys. Rev. B 71, 064418 (2005).

    Article  Google Scholar 

  34. Sawatzky, G. A. & Allen, J. W. Magnitude and origine of the band gap in NiO. Phys. Rev. Lett. 53, 2339–2342 (1984).

    Article  Google Scholar 

  35. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  Google Scholar 

  36. van Elp, J., Potze, R. H., Eskes, H., Berger, R. & Sawatzky, G. A. Electronic structure of MnO. Phys. Rev. B 44, 1530–1537 (1991).

    Article  Google Scholar 

  37. Mahadevan, P. & Zunger, A. Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs, and GaSb. Appl. Phys. Lett. 85, 2860–2862 (2004).

    Article  Google Scholar 

  38. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Thomson Learning, Stamford, 1976).

    Google Scholar 

  39. Okabayashi, J. et al. Core-level photoemission study of Ga1−xMnxAs . Phys. Rev. B 58, R4211–R4214 (1998).

    Article  Google Scholar 

  40. Fischer, S., Wetzel, C., Haller, E. E. & Meyer, B. K. On p-type doping in GaN-acceptor binding energies. Appl. Phys. Lett. 67, 1298–1300 (1995).

    Article  Google Scholar 

  41. Kohler, U., Lubbers, M., Mimkes, J. & As, D. J. Properties of carbon as an acceptor in cubic GaN. Physica B 308, 126–129 (2001).

    Article  Google Scholar 

  42. Temmerman, W. M., Szotek, Z. & Winter, H. Band-structure method for 4f electons in elemenetal Pr metal. Phys. Rev. B 47, 1184–1189 (1993).

    Article  Google Scholar 

  43. Okabayashi, J. et al. Mn 3d partial density of states in Ga1−xMnxAs studied by resonant phototemission spectroscopy. Phys. Rev. B 59, R2486–R2489 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory. It was supported by the Defense Advanced Research Project Agency as well as by the Division of Materials Science and Engineering of the Office of Basic Energy Sciences, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Batelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Schulthess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulthess, T., Temmerman, W., Szotek, Z. et al. Electronic structure and exchange coupling of Mn impurities in III–V semiconductors. Nature Mater 4, 838–844 (2005). https://doi.org/10.1038/nmat1509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing