Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The aging of hematopoietic stem cells

Abstract

We have purified hematopoietic stem cells (HSCs) from the bone marrow of old mice and compared their properties to HSCs in young and middle–aged mice. Single, reconstituting HSCs (by limit dilution) from old and young mice exhibited indistinguishable progenitor activities in vivo. HSCs were five times as frequent in the bone marrow of old mice; however, HSCs from old mice were only one–quarter as efficient at homing to and engrafting the bone marrow of irradiated recipients. HSCs in young and middle–aged mice rarely were in the S/G2/M phases of the cell cycle, but HSCs in old mice were frequently in cycle. We speculate that the unexpected proliferation of HSCs in old mice might be related to the increased incidence of leukemia in old mice. HSCs change with age, but it is unknown whether these changes are determined intrinsically or caused by the aging of their environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  Google Scholar 

  2. Schneider, E.L. & Mitsui, Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73, 3584–3588 (1976).

    Article  CAS  Google Scholar 

  3. Reincki, U., Hannon, E.C., Rosenblatt, M. & Hellman, S. Proliferative capacity of murine hematopoietic stem cells in vitro. Science 215, 1619–1622 (1982).

    Article  Google Scholar 

  4. Siminovitch, L., Till, J.E. & McCulloch, E.A. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell. Comp. Physiol. 64, 23–32 (1964).

    Article  CAS  Google Scholar 

  5. Ogden, D.A. & Micklem, H.S. The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22, 287–293 (1976).

    Article  CAS  Google Scholar 

  6. Harrison, D.E. Proliferative capacity of erythropoietic stem cell lines and aging: An overview. Mech. Ageing Dev. 9, 409–426 (1979).

    Article  CAS  Google Scholar 

  7. Harrison, D.E. & Astle, C.M. Loss of stem cell repopulating ability upon transplantation: Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779 (1982).

    Article  CAS  Google Scholar 

  8. Harrison, D.E., Astle, C.M. & Delaittre, J.A. Loss of proliferative capacity in immunohematopoietic stem cells caused by serial transplantation rather than aging. J. Exp. Med. 147, 1526–1531 (1978).

    Article  CAS  Google Scholar 

  9. Harrison, D.E., Astle, C.M. & Lerner, C. Ultimate erythropoietic repopulating abilities of fetal, young adult, and old adult cells compared using repeated irradiation. J. Exp. Med. 160, 759–771 (1984).

    Article  CAS  Google Scholar 

  10. Harrison, D.E. Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc. Natl. Acad. Sci. USA 70, 4184–3188 (1973).

    Article  Google Scholar 

  11. Harrison, D.E. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J. Exp. Med. 157, 1496–1504 (1983).

    Article  CAS  Google Scholar 

  12. Chiu, C.-P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996).

    Article  CAS  Google Scholar 

  13. Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860 (1994).

    Article  CAS  Google Scholar 

  14. Harley, C.B. Telomere loss: Mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    Article  CAS  Google Scholar 

  15. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  Google Scholar 

  16. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  17. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: Evidence that Thy-l.1loLin-Sca-l+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  Google Scholar 

  18. Harrison, D.E. & Archer, J.R. Genetic differences in effects of food restriction on aging in mice. J. Nutr. 117, 376–382 (1987).

    Article  CAS  Google Scholar 

  19. Morrison, S.J., Hemmati, H., Wandycz, A.M. & Weissman, I.L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  Google Scholar 

  20. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  21. Heimfeld, S., Hudak, S., Weissman, I. & Rennick, D. The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc. Natl. Acad. Sci. USA 88, 9902–9906 (1991).

    Article  CAS  Google Scholar 

  22. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C. & Ogawa, M. Enhancement of murine hematopoiesis by synergistic interactions between steel factor (ligand for c-kit), interleukin-11, and other early acting factors in culture. Blood 79, 2855–2860 (1992).

    CAS  PubMed  Google Scholar 

  23. Nakahata, T. & Ogawa, M. Identification in culture of a class of hematopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc. Natl. Acad. Sci. USA 79, 3843–3847 (1982).

    Article  CAS  Google Scholar 

  24. Cumano, A., Paige, C.J., Iscove, N.N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).

    Article  CAS  Google Scholar 

  25. Muller-Sieburg, C., Whitlock, C.A. & Weissman, I.L. Isolation of two early B lymphocyte progenitors from mouse bone marrow: A committed pre-pre-B cell and a clonogenic Thy-1lo hematopoietic stem cell. Cell 44, 653–662 (1986).

    Article  CAS  Google Scholar 

  26. Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G.V. & Wolf, N.S. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA 92, 9647–9651 (1995).

    Article  CAS  Google Scholar 

  27. Peters, S.O., Kittler, E.L.W. Ramshaw, H.S. & Quesenberry, P.J. Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87, 30–37 (1996).

    CAS  PubMed  Google Scholar 

  28. Spangrude, G.J., Brooks, D.M. & Tumas, D.B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: In vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1016 (1995)

    CAS  PubMed  Google Scholar 

  29. Harrison, D.E., Astle, C.M. & Stone, M. Numbers and functions of trans-plantable primitive immunohematopoietic stem cells: Effect of age. J. Immunol. 142, 3833–3840 (1989).

    CAS  PubMed  Google Scholar 

  30. Uchida, N., Aguila, H., Fleming, W.H., Jerabek, L. & Weissman, I.L. Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified hematopoietic stem cells. Blood 83, 3758–3779 (1994).

    CAS  PubMed  Google Scholar 

  31. Sharp, A. et al. Age related changes in hemopoietic capacity of bone marrow cells. Mech. of Ageing and Development 48, 91–99 (1989).

    Article  CAS  Google Scholar 

  32. Farrar, J.J., Loughman, B.E. & Nordin, A.A. Lymphopoietic potential of bone marrow cells from aged mice: Comparison of the cellular constituents of bone marrow from young and aged mice. J. Immunol. 112, 1244–1249 (1974).

    CAS  PubMed  Google Scholar 

  33. Francus, T., Chen, Y.W., Staiano-Coico, L. & Hefton, J.M. Effect of age on the capacity of the bone marrow and the spleen cells to generate B lymphocytes. J. Immunol. 137, 2411–2417 (1986).

    CAS  PubMed  Google Scholar 

  34. Rolink, A., Haasner, D., Nishikawa, S.-I. & Melchers, F. Changes in frequencies of clonable pre-B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300 (1993).

    CAS  PubMed  Google Scholar 

  35. Smith, L.G., Weissman, I.L. & Heimfeld, S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 88, 2788–2792 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, S., Wandycz, A., Akashi, K. et al. The aging of hematopoietic stem cells. Nat Med 2, 1011–1016 (1996). https://doi.org/10.1038/nm0996-1011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0996-1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing