Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning

Abstract

Hematopoietic stem cells have been successfully employed for tolerance induction in a variety of rodent and large animal studies. However, clinical transplantation of fully allogeneic bone marrow or blood-borne stem cells is still associated with major obstacles, such as graft-versus-host disease or cytoreductive conditioning-related toxicity. Here we show that when rat embryonic stem cell-like cells of WKY origin are injected intraportally into fully MHC-mismatched DA rats, they engraft permanently (>150 days) without supplementary host conditioning. This deviation of a potentially alloreactive immune response sets the basis for long-term graft acceptance of second-set transplanted WKY cardiac allografts. Graft survival was strictly correlated with a state of mixed chimerism, which required functional thymic host competence. Our results provide a rationale for using preimplantation-stage stem cells as vehicles in gene therapy and for the induction of long-term graft acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and markers of RESC.
Figure 2: In vivo trafficking of intraportally injected RESC.
Figure 3: Thymic competence is required for RESC-induced donor-specific graft acceptance.
Figure 4: RESC suppress donor-specific immune responses in vivo.

Similar content being viewed by others

References

  1. George, J.F., Goldstein, D.R. & Thomas, J.M. Donor bone marrow and transplantation tolerance: historical perspectives, molecular mechanisms and future directions (review). Int. J. Mol. Med. 4, 475–482 (1999).

    CAS  PubMed  Google Scholar 

  2. Weissman, I.L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    Article  CAS  Google Scholar 

  3. Ildstad, S.T. & Sachs, D.H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984).

    Article  CAS  Google Scholar 

  4. Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Med. 6, 464–469 (2000).

    Article  CAS  Google Scholar 

  5. Wekerle, T. et al. Anti-CD154 or CTLA4Ig obviates the need for thymic irradiation in a non-myeloablative conditioning regimen for the induction of mixed hematopoietic chimerism and tolerance. Transplantation 68, 1348–1355 (1999).

    Article  CAS  Google Scholar 

  6. Sykes, M., Szot, G.L., Swenson, K.A. & Pearson, D.A. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nature Med. 3, 783–787 (1997).

    Article  CAS  Google Scholar 

  7. Sharabi, Y. & Sachs, D.H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J. Exp. Med. 169, 493–502 (1989).

    Article  CAS  Google Scholar 

  8. Hess A.D., Fischer, A.C. & Beschorner, W.E. Effector mechanisms in cyclosporine A-induced syngeneic graft-versus-host disease. J. Immunol. 145, 526–533 (1990).

    CAS  PubMed  Google Scholar 

  9. Ferrara, J.L., Levy, R. & Chao, N.J. Pathophysiologic mechanisms of acute graft- vs .-host disease (review). Biol. Blood Marrow Transplant. 5, 347–356 (1999).

    Article  CAS  Google Scholar 

  10. Reisner, Y. & Martelli, M.F. Transplantation tolerance induced by 'mega dose' CD34+ cell transplants. Exp. Hematol. 28, 119–127 (2000).

    Article  CAS  Google Scholar 

  11. Reisner, Y. & Martelli, M.F. Tolerance induction by 'megadose' transplants of CD34+ stem cells: a new option for leukemia patients without an HLA-matched donor [In Process Citation]. Curr. Opin. Immunol. 12, 536–541 (2000).

    Article  CAS  Google Scholar 

  12. Vacchio, M.S. & Jiang, S.P. The fetus and the maternal immune system: pregnancy as a model to study peripheral T-cell tolerance. Crit. Rev. Immunol. 19, 461–480 (1999).

    CAS  PubMed  Google Scholar 

  13. Medawar, P.B. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–338 (1954).

    Google Scholar 

  14. Tafuri, A., Alferink, J., Moller, P., Hammerling, G.J. & Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633 (1995).

    Article  CAS  Google Scholar 

  15. Zhou, M. & Mellor, A.L. Expanded cohorts of maternal CD8+ T-cells specific for paternal MHC class I accumulate during pregnancy. J. Reprod. Immunol. 40, 47–62 (1998).

    Article  CAS  Google Scholar 

  16. Bianchi, D.W. Current knowledge about fetal blood cells in the maternal circulation. J. Perinat. Med. 26, 175–185 (1998).

    CAS  PubMed  Google Scholar 

  17. Wekerle, T. & Sykes, M. Mixed chimerism as an approach for the induction of transplantation tolerance. Transplantation 68, 459–467 (1999).

    Article  CAS  Google Scholar 

  18. Shizuru, J.A., Weissman, I.L., Kernoff, R., Masek, M. & Scheffold, Y.C. Purified hematopoietic stem cell grafts induce tolerance to alloantigens and can mediate positive and negative T cell selection. Proc. Natl. Acad. Sci. USA 97, 9555–9560 (2000).

    Article  CAS  Google Scholar 

  19. Zinkernagel, R.M., Callahan, G.N., Klein, J. & Dennert, G. Cytotoxic T cells learn specificity for self H-2 during differentiation in the thymus. Nature 271, 251–253 (1978).

    Article  CAS  Google Scholar 

  20. Fink, P.J. & Bevan, M.J. H-2 antigens of the thymus determine lymphocyte specificity. J. Exp. Med. 148, 766–775 (1978).

    Article  CAS  Google Scholar 

  21. French, L.E. et al. Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell. Biol. 133, 335–343 (1995).

    Article  Google Scholar 

  22. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  Google Scholar 

  23. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege [see comments]. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  24. Grusby, M.J., et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl. Acad. Sci. USA 90, 3913–3917 (1993).

    Article  CAS  Google Scholar 

  25. Restifo, N.P. Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med. 6, 493–495 (2000).

    Article  CAS  Google Scholar 

  26. O'Connell, J. et al. Immune privilege or inflammation? Insights into the Fas ligand enigma. Nature Med. 7, 271–274 (2001).

    Article  CAS  Google Scholar 

  27. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D.L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci USA 94, 3943–3947 (1997).

    Article  CAS  Google Scholar 

  28. Kang, S.M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).

    Article  CAS  Google Scholar 

  29. Li, X.K. et al. Prolonged survival of rat liver allografts transfected with Fas ligand-expressing plasmid. Transplantation 66, 1416–1423 (1998).

    Article  CAS  Google Scholar 

  30. Swenson, K.M. et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation 65, 155–160 (1998).

    Article  CAS  Google Scholar 

  31. George, J.F. et al. An essential role for Fas ligand in transplantation tolerance induced by donor bone marrow. Nature Med. 4, 333–335 (1998).

    Article  CAS  Google Scholar 

  32. Liechty, K.W. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Med. 6, 1282–1286 (2000).

    Article  CAS  Google Scholar 

  33. Iannaccone, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D. & Brenin, D.R. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 163, 288–292 (1994).

    Article  CAS  Google Scholar 

  34. Brenin, D., Look, J., Hübner, N., Levan, G. & Iannaccone, P. Correction. Dev. Biol. 185, 124–125 (1997).

    Article  CAS  Google Scholar 

  35. Ono, K. & Lindsey, E.S. Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 57, 225–229 (1969).

    CAS  PubMed  Google Scholar 

  36. Kampinga, J. et al. Vascular thymus transplantation in rats. Technique, morphology and function. Transplantation 50, 669–678 (1990).

    Article  CAS  Google Scholar 

  37. Fändrich, F. et al. Different in vivo tolerogenicity of MHC class I peptides. J. Leukoc. Biol. 65, 16–27 (1999).

    Article  Google Scholar 

  38. Cordell, J.L. et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J. Histochem. Cytochem. 32, 219–229 (1984).

    Article  CAS  Google Scholar 

  39. Solter, D. & Knowles, B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–5569 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant of the Interdisziplinäre Forschergruppe Transplantationsmedizin (IFTM) of the University of Kiel and partly by a grant from the Deutsche Forschungsgemeinschaft (Za 131/7-3). We thank P. Boll, K. Broetzmann, P. Krüger, K.-A. Y. Ott, I. Schellhorn and M. Hauberg for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Fändrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fändrich, F., Lin, X., Chai, G. et al. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8, 171–178 (2002). https://doi.org/10.1038/nm0202-171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0202-171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing