Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling

Abstract

NF-κB signaling is required for the maintenance of normal B lymphocytes, whereas dysregulated NF-κB activation contributes to B cell lymphomas. The events that regulate NF-κB signaling in B lymphocytes are poorly defined. Here, we demonstrate that PKC-β is specifically required for B cell receptor (BCR)-mediated NF-κB activation. B cells from protein kinase C-β (PKC-β)-deficient mice failed to recruit the IκB kinase (IKK) complex into lipid rafts, activate IKK, degrade IκB or up-regulate NF-κB–dependent survival signals. Inhibition of PKC-β promoted cell death in B lymphomas characterized by exaggerated NF-κB activity. Together, these data define an essential role for PKC-β in BCR survival signaling and highlight PKC-β as a key therapeutic target for B-lineage malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKC-β is required for BCR-dependent survival signaling.
Figure 2: PKC-β−/− mice have a reduced percentage of recirculating BM B cells.
Figure 3: PKC-β is required for BCR- and FcεRI-dependent NF-κB activation.
Figure 4: PKC-β is required for BCR-dependent recruitment of IKK into lipid raft compartments and for generation of the BCR-signalosome.
Figure 5: PKC-β is not required for BCR-mediated differentiation signals.
Figure 6: PKC-β inhibition leads to cell death in PKC-β–expressing DLBCL lines.
Figure 7: PKC-β expression profile and response to PKC-β inhibition in a panel of DLBCL lines.

Similar content being viewed by others

References

  1. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  2. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  3. Bendall, H.H., Sikes, M.L., Ballard, D.W. & Oltz, E.M. An intact NF-κB signaling pathway is required for maintenance of mature B cell subsets. Mol. Immunol. 36, 187–195 (1999).

    Article  CAS  Google Scholar 

  4. Kaisho, T. et al. IκB kinase α is essential for mature B cell development and function. J. Exp. Med. 193, 417–426 (2001).

    Article  CAS  Google Scholar 

  5. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  Google Scholar 

  6. Ren, H., Schmalstieg, A., Yuan, D. & Gaynor, R.B. IκB kinase β is critical for B cell proliferation and antibody response. J. Immunol. 168, 577–587 (2002).

    Article  CAS  Google Scholar 

  7. Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Invest. 107, 241–246 (2001).

    Article  CAS  Google Scholar 

  8. Rayet, B. & Gelinas, C. Aberrant Rel/NF-κB genes and activity in human cancer. Oncogene 18, 6938–6947 (1999).

    Article  CAS  Google Scholar 

  9. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  10. Davis, R.E., Brown, K.D., Siebenlist, U. & Staudt, L.M. Constitutive NF-κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861–1874 (2001).

    Article  CAS  Google Scholar 

  11. Pham, L.V. et al. A CD40 signalosome anchored in lipid rafts leads to constitutive activation of NF-κB and autonomous cell growth in B cell lymphomas. Immunity 16, 37–50 (2002).

    Article  CAS  Google Scholar 

  12. Bajpai, U.D., Zhang, K., Teutsch, M., Sen, R. & Wortis, H.H. Bruton's tyrosine kinase links the B cell receptor to nuclear factor κB activation. J. Exp. Med. 191, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  13. Petro, J.B., Rahman, S.M., Ballard, D.W. & Khan, W.N. Bruton's tyrosine kinase is required for activation of IκB kinase and NF-κB in response to B cell receptor engagement. J. Exp. Med. 191, 1745–1754 (2000).

    Article  CAS  Google Scholar 

  14. Rawlings, D.J. Bruton's tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin. Immunol. 91, 243–253 (1999).

    Article  CAS  Google Scholar 

  15. Rawlings, D.J. & Witte, O.N. The Btk subfamily of cytoplasmic tyrosine kinases: structure, regulation and function. Semin. Immunol. 7, 237–246 (1995).

    Article  CAS  Google Scholar 

  16. Rawlings, D.J. et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  Google Scholar 

  17. Leitges, M. et al. Immunodeficiency in protein kinase Cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  Google Scholar 

  18. Newton, A.C. Regulation of protein kinase C. Curr. Opin. Cell. Biol. 9, 161–167 (1997).

    Article  CAS  Google Scholar 

  19. Kawakami, Y. et al. Regulation of PKC-βI by two protein-tyrosine kinases, Btk and Syk. Proc. Natl. Acad. Sci. USA 97, 7423–7428 (2000).

    Article  CAS  Google Scholar 

  20. Sun, Z. et al. PKC–θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    Article  CAS  Google Scholar 

  21. Krappmann, D., Patke, A., Heissmeyer, V. & Scheidereit, C. B-cell receptor- and phorbol ester-induced NF-κB and c-Jun N- terminal kinase activation in B cells requires novel protein kinase C's. Mol. Cell. Biol. 21, 6640–6650 (2001).

    Article  CAS  Google Scholar 

  22. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    Article  CAS  Google Scholar 

  23. Mecklenbrauker, I., Saijo, K., Zheng, N.Y., Leitges, M. & Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature 416, 860–865 (2002).

    Article  Google Scholar 

  24. Shipp, M.A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med. 8, 68–74 (2002).

    Article  CAS  Google Scholar 

  25. Neuberger, M.S. Antigen receptor signaling gives lymphocytes a long life. Cell 90, 971–973 (1997).

    Article  CAS  Google Scholar 

  26. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  Google Scholar 

  27. Su, T.T. & Rawlings, D.J. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J. Immunol. 168, 2101–2110 (2002).

    Article  CAS  Google Scholar 

  28. Anderson, J.S., Teutsch, M., Dong, Z. & Wortis, H.H. An essential role for Bruton's tyrosine kinase in the regulation of B-cell apoptosis. Proc. Natl. Acad. Sci. USA 93, 10966–10971 (1996).

    Article  CAS  Google Scholar 

  29. Choi, M.S., Holmann, M., Atkins, C.J. & Klaus, G.G. Expression of Bcl-x during mouse B cell differentiation and following activation by various stimuli. Eur. J. Immunol. 26, 676–682 (1996).

    Article  CAS  Google Scholar 

  30. Solvason, N. et al. Transgene expression of Bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in XID B cells. J. Exp. Med. 187, 1081–1091 (1998).

    Article  CAS  Google Scholar 

  31. Chen, C., Edelstein, L.C. & Gelinas, C. The Rel NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL . Mol. Cell. Biol. 20, 2687–2695 (2000).

    Article  Google Scholar 

  32. Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKθ and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  Google Scholar 

  33. Fluckiger, A.C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17, 1973–1985 (1998).

    Article  CAS  Google Scholar 

  34. Bi, K. & Altman, A. Membrane lipid microdomains and the role of PKC-θ in T cell activation. Semin. Immunol. 13, 139–146 (2001).

    Article  CAS  Google Scholar 

  35. Guo, B., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. & Rawlings, D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  36. Cheng, P.C., Dykstra, M.L., Mitchell, R.N. & Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  Google Scholar 

  37. Bi, K. et al. Antigen-induced translocation of PKC-θ to membrane rafts is required for T cell activation. Nature Immunol. 2, 556–563 (2001).

    Article  CAS  Google Scholar 

  38. Rolink, A.G. et al. Mutations affecting either generation or survival of cells influence the pool size of mature B cells. Immunity 10, 619–628 (1999).

    Article  CAS  Google Scholar 

  39. Cariappa, A., Kim, T.J. & Pillai, S. Accelerated emigration of B lymphocytes in the Xid mouse. J. Immunol. 162, 4417–4423 (1999).

    CAS  PubMed  Google Scholar 

  40. Brorson, K. et al. XID affects events leading to B cell cycle entry. J. Immunol. 159, 135–143 (1997).

    CAS  PubMed  Google Scholar 

  41. Leitges, M. et al. Targeted disruption of the PKC-ζ gene results in the impairment of the NF-κB pathway. Mol. Cell 8, 771–780 (2001).

    Article  CAS  Google Scholar 

  42. Khoshnan, A., Bae, D., Tindell, C.A. & Nel, A.E. The physical association of protein kinase C θ with a lipid raft-associated inhibitor of κB factor kinase (IKK) complex plays a role in the activation of the NF-κB cascade by TCR and CD28. J. Immunol. 165, 6933–6940 (2000).

    Article  CAS  Google Scholar 

  43. Das, K.C. & White, C.W. Activation of NF-κB by antineoplastic agents. Role of protein kinase C. J. Biol. Chem. 272, 14914–14920 (1997).

    Article  CAS  Google Scholar 

  44. Cheng, Q., Lee, H.H., Li, Y., Parks, T.P. & Cheng, G. Upregulation of Bcl-x and Bfl-l as a potential mechanism of chemoresistance, which can be overcome by NF-κB inhibition. Oncogene 19, 4936–4940 (2000).

    Article  CAS  Google Scholar 

  45. Ishii, H. et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC-β inhibitor. Science 272, 728–731 (1996).

    Article  CAS  Google Scholar 

  46. Teicher, B.A. et al. Antiangiogenic and antitumor effects of a protein kinase Cβ inhibitor in human T98G glioblastoma multiforme xenografts. Clin. Cancer Res. 7, 634–640 (2001).

    CAS  PubMed  Google Scholar 

  47. Epstein, A.L. et al. Biology of the human malignant lymphomas. IV. Functional characterization of ten diffuse histiocytic lymphoma cell lines. Cancer 42, 2379–2391 (1978).

    Article  CAS  Google Scholar 

  48. Tweeddale, M.E. et al. The presence of clonogenic cells in high-grade malignant lymphoma: a prognostic factor. Blood 69, 1307–1314 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Sawyers, G. Cheng and A. Scharenberg for critical reading of the manuscript and members of the Rawlings lab for technical assistance and thoughtful discussions. Supported in part by NIH grants HD37091, CA81140, AI38348, AI33617 and CA74929 and the American Cancer Society. Also supported by the MSTP (GM08042) and Tumor Immunology (CA09120) Training Grants at UCLA (to T. T. S.); a Lymphoma Research Foundation Faculty Award (to M. T.); and a McDonnell Scholar Award, Leukemia and Lymphoma Society Scholar Award and the Joan J. Drake Grant for Excellence in Cancer Research (to D. J. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rawlings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, T., Guo, B., Kawakami, Y. et al. PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 3, 780–786 (2002). https://doi.org/10.1038/ni823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing