Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A structural basis for complement inhibition by Staphylococcus aureus

Abstract

To provide insight into bacterial suppression of complement-mediated immunity, we present here structures of a bacterial complement inhibitory protein, both free and bound to its complement target. The 1.25-Å structure of the complement component C3–inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) demonstrated a helical motif involved in complement regulation, whereas the 2.2-Å structure of Efb-C bound to the C3d domain of human C3 allowed insight into the recognition of complement proteins by invading pathogens. Our structure-function studies provided evidence for a previously unrecognized mode of complement inhibition whereby Efb-C binds to native C3 and alters the solution conformation of C3 in a way that renders it unable to participate in successful 'downstream' activation of the complement response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Efb-C at 1.25 Å.
Figure 2: Crystal structure of the Efb-C–C3d complex at 2.2 Å.
Figure 3: Inhibition of C3 activation requires binding of Efb to the C3d domain.
Figure 4: Structural basis of complement inhibition by Efb-C.
Figure 5: Efb-C binds to native forms of C3.
Figure 6: Proposed structural basis for the differential recognition of C3 fragments by Efb-C.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Therapeutic Intervention in the Complement System (eds. Lambris, J.D. & Holers, V.M.) (Humana, Totowa, New Jersey, 2000).

  2. Morikis, D. & Lambris, J.D. Structural Biology of the Complement System (eds. Morikis, D. & Lambris, J.D.) (Taylor & Francis, Boca Raton, Florida, 2005).

    Book  Google Scholar 

  3. The Human Complement System in Health and Diseases (eds. Volanakis, J.E. & Frank, M.) (Marcel Dekker, New York 1998).

  4. Patti, J.M., Allen, B.L., McGavin, M.J. & Hook, M. MSCRAMM mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 585–617 (1994).

    Article  CAS  Google Scholar 

  5. Chavakis, T. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 8, 687–693 (2002).

    Article  CAS  Google Scholar 

  6. Lee, L.Y. et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J. Clin. Invest. 110, 1461–1471 (2002).

    Article  CAS  Google Scholar 

  7. Lee, L.Y.L. et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190, 571–579 (2004).

    Article  CAS  Google Scholar 

  8. Lee, L.Y.L., Liang, X., Hook, M. & Brown, E.L. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J. Biol. Chem. 279, 50710–50716 (2004).

    Article  CAS  Google Scholar 

  9. Rooijakkers, S.H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article  CAS  Google Scholar 

  10. Hornef, M.W., Wick, M.J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune response. Nat. Immunol. 3, 1033–1040 (2002).

    Article  CAS  Google Scholar 

  11. Sahu, A. & Lambris, J.D. Structure and biology of complement protein 3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48 (2001).

    Article  CAS  Google Scholar 

  12. Neth, O., Jack, D.L., Johnson, M., Klein, N.J. & Turner, M.W. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J. Immunol. 169, 4430–4436 (2002).

    Article  CAS  Google Scholar 

  13. Kawasaki, A. et al. Activation of the human complement cascade by bacterial cell walls, peptidoglycans, water-soluble peptidoglycan components, and synthetic muramylpeptides - studies on active components and structural requirements. Microbiol. Immunol. 31, 551–569 (1987).

    Article  CAS  Google Scholar 

  14. Bredius, R.G., Driedijk, P.C., Schouten, M.F., Weening, R.S. & Out, T.A. Complement activation by polyclonal immunoglobulin G1 and G2 antibodies against Staphylococcus aureus, Haemophilus influenzae type B, and tetanus toxoid. Infect. Immun. 60, 4838–4847 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Verbrugh, H.A., Van Dijk, W.C., Peters, R., Van Der Tol, M.E. & Verhoef, J. The role of Staphylococcus aureus cell-wall peptidoglycan, teichoic acid, and protein A in the processes of complement activation and opsonization. Immunology 37, 615–621 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilkinson, B.J., Kim, Y., Peterson, P.K., Quie, P.G. & Michael, A.F. Activation of complement by cell surface components of Staphylococcus aureus. Infect. Immun. 20, 388–392 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakiniene, E., Bremell, T. & Tarkowski, A. Complement depletion aggravates Staphylococcus aureus septicaemia and septic arthritis. Clin. Exp. Immunol. 115, 95–102 (1999).

    Article  CAS  Google Scholar 

  18. Palma, M., Nozohoor, S., Schennings, T., Heimdahl, A. & Flock, J.-I. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect. Immun. 64, 5284–5289 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagar, B., Jones, R.G., Diefenbach, R.J., Isenman, D.E. & Rini, J.M. X-ray crystal structure of C3d: aC3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998).

    Article  CAS  Google Scholar 

  20. Harboe, M., Ulvund, G., Vien, L., Fung, M. & Mollnes, T.E. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin. Exp. Immunol. 138, 439–446 (2004).

    Article  CAS  Google Scholar 

  21. Hack, C.E. et al. Disruption of the internal thioester bond in the third component of complement, (C3) which results in the exposure of neodeterminants also present on activation products of C3. An analysis with monoclonal antibodies. J. Immunol. 141, 1602–1609 (1988).

    CAS  PubMed  Google Scholar 

  22. Nishida, N., Walz, T. & Springer, T.A. Structural transitions of complement component C3 and its activation products. Proc. Natl. Acad. Sci. USA 103, 19737–19742 (2006).

    Article  CAS  Google Scholar 

  23. Janssen, B.J.C. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005).

    Article  CAS  Google Scholar 

  24. Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  Google Scholar 

  25. Isenman, D.E. & Cooper, N.R. The structure and function of the third component of human complement 1. The nature and extent of conformational changes accompanying C3 activation. Mol. Immunol. 18, 331–339 (1981).

    Article  CAS  Google Scholar 

  26. Isenman, D.E., Kells, D.I.C., Cooper, N.R., Muller-Eberhard, H.J. & Pangburn, M.K. Nucleophilic modification of human complement component protein C3: correlation of conformational changes with acquisition of C3b-like functional properties. Biochemistry 20, 4458–4467 (1981).

    Article  CAS  Google Scholar 

  27. Isenman, D.E. Conformational changes accompanying proteolytic cleavage of human complement protein C3b by the regulatory enzyme factor I and its cofactor H. Spectroscopic and enzymological studies. J. Biol. Chem. 258, 4238–4244 (1983).

    CAS  PubMed  Google Scholar 

  28. Nilsson, B. et al. Confomational differences between surface-bound and fluid-phase complement component-C3 fragments. Epitope mapping by cDNA expression. Biochem. J. 282, 715–721 (1992).

    Article  CAS  Google Scholar 

  29. Winters, M.S., Spellman, D.S. & Lambris, J.D. Solvent accessibility of native and hydrolyzed human complement component 3 analyzed by hydrogen/deuterium exchange and mass spectrometry. J. Immunol. 174, 3469–3474 (2005).

    Article  CAS  Google Scholar 

  30. Lindahl, G., Sjobring, U. & Johnsson, E. Human complement regulators: a major target for pathogenic microorganisms. Curr. Opin. Immunol. 12, 44–51 (2000).

    Article  CAS  Google Scholar 

  31. Zipfel, P.F. et al. Factor H family proteins: on complement, microbes and human diseases. Biochem. Soc. Trans. 30, 971–978 (2002).

    Article  CAS  Google Scholar 

  32. Hammel, M., Ramyar, K.X., Spencer, C.T. & Geisbrecht, B.V. Crystallization and X-ray diffraction analysis of the complement component-3 (C3) inhibitory domain of Efb from Staphylococcus aureus. Acta. Cryst. F. 62, 285–288 (2006).

    Article  CAS  Google Scholar 

  33. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  34. Terwilliger, T.C. Maximum likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  35. Terwilliger, T.C. Automated main-chain model-building by template-matching and interative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 34–44 (2002).

    Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in the models. Acta Crystallogr. D Biol. Crystallogr. 47, 110–119 (1991).

    Article  Google Scholar 

  37. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  38. Murshudov, G.N., Lebedev, A., Vagin, A.A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr. 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  39. Winn, M., Isupov, M. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacments in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  40. The Collaborative Computational Crystallography Project 4. The CCP4 suite: programs for protein crystallography. Acta Cryst. D 50, 760–763 (1994).

  41. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  42. Zemla, A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31, 3370–3374 (2003).

    Article  CAS  Google Scholar 

  43. Kraus, D., Medof, D.E. & Mold, C. Complementary recognition of alternative pathway activators by decay-accelerating factor and factor H. Infect. Immun. 66, 399–405 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sfyroera, G., Katragadda, M., Morikis, D., Isaacs, S.N. & Lambris, J.D. Electrostatic modeling predicts the activities of orthopoxvirus complement control proteins. J. Immunol. 174, 2143–2151 (2005).

    Article  CAS  Google Scholar 

  45. Becherer, J.D., Alsenz, J., Esparza, I., Hack, C.E. & Lambris, J.D. A segment spanning residues 727–768 of the complement C3 sequence contains a neoantigenic site and accomodates the binding of CR1, factor H, and factor B. Biochemistry 31, 1787–1794 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Jin and J. Chrzas of SER-CAT beamlines 22-ID and 22-BM from the Advanced Photon Source of Argonne National Laboratory for technical assistance with diffraction data collection; A. Rux and B. Sachais (University of Pennsylvania) for support with the Biacore 2000; and D. Leahy, S. Bouyain and K. Ramyar for comments during the preparation of this manuscript. C3-9 was provided by C. Erik Hack (Central Laboratory of The Netherlands Red Cross Blood Transfusion Service). Supported by the School of Biological Sciences at the University of Missouri-Kansas City, the University of Missouri Research Board (2509 to B.V.G.) and the National Institute of Allergy and Infectious Diseases (AI30040 to J.D.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.H. and B.V.G., structural biology and titration calorimetry; G.S., D.R., P.M. and J.D.L., functional assays and SPR.

Corresponding author

Correspondence to Brian V Geisbrecht.

Ethics declarations

Competing interests

Michal Hammel, Georgia Sfyroera, Daniel Ricklin, Paola Magotti, John D Lambris & Brian V Geisbrecht B.V.G. and J.D.L. have applied for a provisional patent concerning potential therapeutic applications of the complexes described.

Supplementary information

Supplementary Fig. 1

Structural comparisons between Efb-C and a protein A module from S. aureus. (PDF 123 kb)

Supplementary Fig. 2

Spatial relationship of Efb-C to the conserved acidic groove of C3d as seen in the Efb-C–C3d crystal structure. (PDF 711 kb)

Supplementary Fig. 3

Structural integrity of the Efb-C-(RENE) mutant. (PDF 595 kb)

Supplementary Fig. 4

Efb-binding renders C3 susceptible to proteolysis in vitro. (PDF 56 kb)

Supplementary Fig. 5

Degradation of C3 in complement-inactivated plasma in the presence of Efb-C. (PDF 181 kb)

Supplementary Fig. 6

Alternative depiction of structural models for Efb-C bound to C3 and C3b. (PDF 417 kb)

Supplementary Methods (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammel, M., Sfyroera, G., Ricklin, D. et al. A structural basis for complement inhibition by Staphylococcus aureus. Nat Immunol 8, 430–437 (2007). https://doi.org/10.1038/ni1450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1450

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing