Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deliberate removal of T cell help improves virus-neutralizing antibody production

Abstract

The B cell response to lymphocytic choriomeningitis virus is characterized by a CD4+ T cell–dependent polyclonal hypergammaglobulinemia and delayed formation of virus-specific neutralizing antibodies. Here we provide evidence that, paradoxically, because of polyclonal B cell activation, virus-specific T cell help impairs the induction of neutralizing antibody responses. Experimental reduction in CD4+ T cell help in vivo resulted in potent neutralizing antibody responses without impairment of CD8+ T cell activity. These unexpected consequences of polyclonal B cell activation may affect vaccine strategies and the treatment of clinically relevant chronic bacterial, parasitic and viral infections in which hypergammaglobulinemia is regularly found.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of CD8+ T cells on B cell and CD4+ T cell responses.
Figure 2: Inverse correlation between virus-specific T cell help and neutralizing antibody responses in Cd8a−/− mice.
Figure 3: Infection with LCMV-WEdel results in moderate hypergammaglobulinemia but potent neutralizing antibody responses in immunocompetent C57BL/6 mice.
Figure 4: Enhanced neutralizing antibody response after partial CD4+ T cell depletion in vivo in both immunocompetent C57BL/6 and Cd8a−/− mice.
Figure 5: Normal early and memory CTL function can coexist with enhanced neutralizing antibody responses in immunocompetent C57BL/6 mice.
Figure 6: The efficiency of the neutralizing antibody response can be predicted largely by the extent of polyclonal B cell activation but is also modified by the extent of virus replication.
Figure 7: LCMV-induced polyclonal B cell competition acts in an antigen-nonspecific way and is dependent on B cell precursor frequency.

Similar content being viewed by others

References

  1. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  CAS  Google Scholar 

  2. Lehmann-Grube, F., Moskophidis, D. & Lohler, J. Recovery from acute virus infection. Role of cytotoxic T lymphocytes in the elimination of lymphocytic choriomeningitis virus from spleens of mice. Ann. NY Acad. Sci. 532, 238–256 (1988).

    Article  CAS  Google Scholar 

  3. Battegay, M. et al. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J. Immunol. 151, 5408–5415 (1993).

    CAS  PubMed  Google Scholar 

  4. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cooper, S. et al. Analysis of a successful immune response against hepatitis C virus. Immunity 10, 439–449 (1999).

    Article  CAS  Google Scholar 

  6. Shata, M.T. et al. Characterization of the immune response against hepatitis C infection in recovered, and chronically infected chimpanzees. J. Viral Hepat. 9, 400–410 (2002).

    Article  CAS  Google Scholar 

  7. Ciurea, A. et al. Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc. Natl. Acad. Sci. USA 97, 2749–2754 (2000).

    Article  CAS  Google Scholar 

  8. Rasmussen, R.A. et al. Neutralizing antibodies as a potential secondary protective mechanism during chronic SHIV infection in CD8+ T-cell-depleted macaques. AIDS 16, 829–838 (2002).

    Article  CAS  Google Scholar 

  9. Dixon, J.E., Allan, J.E. & Doherty, P.C. The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. Cell Immunol. 107, 8–14 (1987).

    Article  CAS  Google Scholar 

  10. Odermatt, B., Eppler, M., Leist, T.P., Hengartner, H. & Zinkernagel, R.M. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc. Natl. Acad. Sci. USA 88, 8252–8256 (1991).

    Article  CAS  Google Scholar 

  11. Arnaout, R.A. & Nowak, M.A. Competitive coexistence in antiviral immunity. J. Theor. Biol. 204, 431–441 (2000).

    Article  CAS  Google Scholar 

  12. Coutelier, J.P., Johnston, S.J., El Idrissi, M.e.-A. & Pfau, C.J. Involvement of CD4+ cells in lymphocytic choriomeningitis virus-induced autoimmune anaemia and hypergammaglobulinaemia. J. Autoimmun. 7, 589–599 (1994).

    Article  CAS  Google Scholar 

  13. Hunziker, L. et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat. Immunol. 4, 343–349 (2003).

    Article  CAS  Google Scholar 

  14. Silverstein, A.M. & Rose, N.R. On the implications of polyclonal B cell activation. Nat. Immunol. 4, 931–932 (2003).

    Article  CAS  Google Scholar 

  15. Oxenius, A. et al. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur. J. Immunol. 25, 3402–3411 (1995).

    Article  CAS  Google Scholar 

  16. Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. Virus-specific MHC class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    Article  CAS  Google Scholar 

  17. Kamperschroer, C. & Quinn, D.G. Quantification of epitope-specific MHC class-II-restricted T cells following lymphocytic choriomeningitis virus infection. Cell Immunol. 193, 134–146 (1999).

    Article  CAS  Google Scholar 

  18. Hunziker, L., Ciurea, A., Recher, M., Hengartner, H. & Zinkernagel, R.M. Public versus personal serotypes of a viral quasispecies. Proc. Natl. Acad. Sci. USA 100, 6015–6020 (2003).

    Article  CAS  Google Scholar 

  19. Bruns, M., Cihak, J., Muller, G. & Lehmann-Grube, F. Lymphocytic choriomeningitis virus. VI. Isolation of a glycoprotein mediating neutralization. Virology 130, 247–251 (1983).

    Article  CAS  Google Scholar 

  20. Cobbold, S., Martin, G. & Waldmann, H. Monoclonal antibodies for the prevention of graft-versus-host disease and marrow graft rejection. The depletion of T cell subsets in vitro and in vivo. Transplantation 42, 239–247 (1986).

    Article  CAS  Google Scholar 

  21. Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  Google Scholar 

  22. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  Google Scholar 

  23. Sun, J.C. & Bevan, M.J. Defective CD8+ T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  Google Scholar 

  24. Leist, T.P., Eppler, M. & Zinkernagel, R.M. Enhanced virus replication and inhibition of lymphocytic choriomeningitis virus disease in anti-γ interferon-treated mice. J. Virol. 63, 2813–2819 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Moskophidis, D. et al. Resistance of lymphocytic choriomeningitis virus to α/β interferon and to γ interferon. J. Virol. 68, 1951–1955 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Broek, M.F., Muller, U., Huang, S., Aguet, M. & Zinkernagel, R.M. Antiviral defense in mice lacking both α/β and γ interferon receptors. J. Virol. 69, 4792–4796 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for α/β and γ interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J. Virol. 75, 8407–8423 (2001).

    Article  CAS  Google Scholar 

  28. Hangartner, L. et al. Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proc. Natl. Acad. Sci. USA 100, 12883–12888 (2003).

    Article  CAS  Google Scholar 

  29. Kettman, J. & Dutton, R.W. An in vitro primary immune response to 2,4,6-trinitrophenyl substituted erythrocytes: response against carrier and hapten. J. Immunol. 104, 1558–1561 (1970).

    CAS  PubMed  Google Scholar 

  30. Leist, T.P., Ruedi, E. & Zinkernagel, R.M. Virus-triggered immune suppression in mice caused by virus-specific cytotoxic T cells. J. Exp. Med. 167, 1749–1754 (1988).

    Article  CAS  Google Scholar 

  31. Thomsen, A.R. et al. Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus. Int. Immunol. 9, 1757–1766 (1997).

    Article  CAS  Google Scholar 

  32. Parren, P.W. et al. Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design. Immunol. Lett. 57, 105–112 (1997).

    Article  CAS  Google Scholar 

  33. Gandhi, R.T. & Walker, B.D. Immunologic control of HIV-1. Annu. Rev. Med. 53, 149–172 (2002).

    Article  CAS  Google Scholar 

  34. Ferrantelli, F. et al. Do not underestimate the power of antibodies--lessons from adoptive transfer of antibodies against HIV. Vaccine 20, A61–65 (2002).

    Article  CAS  Google Scholar 

  35. Baldridge, J.R., McGraw, T.S., Paoletti, A. & Buchmeier, M.J. Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells. J. Virol. 71, 755–758 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barouch, D.H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  Google Scholar 

  37. Lehmann-Grube, F. Persistent infection of the mouse with the virus of lymphocytic choriomeningitis. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 6, 8–21 (1972).

    Article  CAS  Google Scholar 

  38. Younes, S.A. et al. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J. Exp. Med. 198, 1909–1922 (2003).

    Article  CAS  Google Scholar 

  39. Morris, L. et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J. Exp. Med. 188, 233–245 (1998).

    Article  CAS  Google Scholar 

  40. Kimura, T. et al. Reconstitution of spontaneous neutralizing antibody response against autologous human immunodeficiency virus during highly active antiretroviral therapy. J. Infect. Dis. 185, 53–60 (2002).

    Article  CAS  Google Scholar 

  41. Hazenberg, M.D. et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17, 1881–1888 (2003).

    Article  Google Scholar 

  42. De Milito, A. et al. Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 103, 2180–2186 (2004).

    Article  CAS  Google Scholar 

  43. Douek, D.C. Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev. 5, 172–177 (2003).

    PubMed  Google Scholar 

  44. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  Google Scholar 

  45. Battegay, M. et al. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J. Virol. Methods 33, 191–198 (1991).

    Article  CAS  Google Scholar 

  46. Senn, B.M. et al. Combinatorial immunoglobulin light chain variability creates sufficient B cell diversity to mount protective antibody responses against pathogen infections. Eur. J. Immunol. 33, 950–961 (2003).

    Article  CAS  Google Scholar 

  47. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.J. MacPherson and D. Pinschewer for discussions; E. Horvath, K. Tschannen and J. Weber for technical assistance; and the Institute of Clinical Chemistry, University Hospital Zürich, Switzerland for technical support. Supported by the European Union project (QLK-2000-01476) on combined immune and gene therapy of chronic hepatitis, the Swiss National Foundation, the Kanton of Zürich, Switzerland, Eidgenössische Technische Hochschule (Zürich, Switzerland) and Deutsche Forschungsgemeinschaft (LA1419/1-1 to K.S.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Recher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Influence of viral dosage on CD4+ T cell function (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recher, M., Lang, K., Hunziker, L. et al. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat Immunol 5, 934–942 (2004). https://doi.org/10.1038/ni1102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing