Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways

Abstract

The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the noncanonical NF-κB pathway, but as a RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBɛ. IκB control of RelB minimized spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-κB signaling module identified control points of this unexpected cell type–specific regulation. Fibroblasts that we engineered accordingly showed DC-like RelB control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent T cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A MEF-based kinetic model does not account for RelB regulation in DCs.
Figure 2: IκBα binding RelB-p50 limits spontaneous DC maturation.
Figure 3: RelB-p50 is rapidly activated during TLR-mediated DC maturation.
Figure 4: Determinants of RelB's responsiveness to canonical signals.
Figure 5: RelB regulates DC activation markers and inflammatory mediators.
Figure 6: RelB may mediate cRel functions in DCs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Google Scholar 

  2. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    CAS  PubMed  Google Scholar 

  3. Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A. & Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    CAS  PubMed  Google Scholar 

  4. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    CAS  PubMed  Google Scholar 

  5. Carrasco, D., Ryseck, R.P. & Bravo, R. Expression of relB transcripts during lymphoid organ development: specific expression in dendritic antigen-presenting cells. Development 118, 1221–1231 (1993).

    CAS  PubMed  Google Scholar 

  6. Zanetti, M., Castiglioni, P., Schoenberger, S. & Gerloni, M. The role of relB in regulating the adaptive immune response. Ann. NY Acad. Sci. 987, 249–257 (2003).

    CAS  PubMed  Google Scholar 

  7. Li, M. et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J. Immunol. 178, 5480–5487 (2007).

    CAS  PubMed  Google Scholar 

  8. Wu, L. et al. RelB is essential for the development of myeloid-related CD8α- dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity 9, 839–847 (1998).

    CAS  PubMed  Google Scholar 

  9. Kobayashi, T. et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19, 353–363 (2003).

    CAS  PubMed  Google Scholar 

  10. Hofmann, J., Mair, F., Greter, M., Schmidt-Supprian, M. & Becher, B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J. Exp. Med. 208, 1917–1929 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, H. et al. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm. Res. 59, 197–205 (2010).

    CAS  PubMed  Google Scholar 

  12. Pomerantz, J.L. & Baltimore, D. Two pathways to NF-κB. Mol. Cell 10, 693–695 (2002).

    CAS  PubMed  Google Scholar 

  13. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    CAS  PubMed  Google Scholar 

  14. Derudder, E. et al. RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J. Biol. Chem. 278, 23278–23284 (2003).

    CAS  PubMed  Google Scholar 

  15. Lind, E.F. et al. Dendritic cells require the NF-κB2 pathway for cross-presentation of soluble antigens. J. Immunol. 181, 354–363 (2008).

    CAS  PubMed  Google Scholar 

  16. O'Sullivan, B.J. & Thomas, R. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J. Immunol. 168, 5491–5498 (2002).

    CAS  PubMed  Google Scholar 

  17. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-κB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003).

    CAS  PubMed  Google Scholar 

  18. Ammon, C., Mondal, K., Andreesen, R. & Krause, S.W. Differential expression of the transcription factor NF-κB during human mononuclear phagocyte differentiation to macrophages and dendritic cells. Biochem. Biophys. Res. Commun. 268, 99–105 (2000).

    CAS  PubMed  Google Scholar 

  19. Gasparini, C., Foxwell, B.M. & Feldmann, M. RelB/p50 regulates CCL19 production, but fails to promote human DC maturation. Eur. J. Immunol. 39, 2215–2223 (2009).

    CAS  PubMed  Google Scholar 

  20. Basak, S., Shih, V.F. & Hoffmann, A. Generation and activation of multiple dimeric transcription factors within the NF-κB signaling system. Mol. Cell. Biol. 28, 3139–3150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Basak, S. et al. A fourth IκB protein within the NF-κB signaling module. Cell 128, 369–381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shih, V.F. et al. Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc. Natl. Acad. Sci. USA 106, 9619–9624 (2009).

    CAS  PubMed  Google Scholar 

  23. Li, T. et al. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat. Immunol. 11, 799–805 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wuerzberger-Davis, S.M. et al. Nuclear export of the NF-κB inhibitor IκBα is required for proper B cell and secondary lymphoid tissue formation. Immunity 34, 188–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shih, V.F., Tsui, R., Caldwell, A. & Hoffmann, A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 21, 86–102 (2011).

    CAS  PubMed  Google Scholar 

  26. Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S.C. IκB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell. Biol. 24, 6040–6048 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. He, J.Q. et al. Rescue of TRAF3-null mice by p100 NF-κB deficiency. J. Exp. Med. 203, 2413–2418 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffmann, A., Natoli, G. & Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706–6716 (2006).

    CAS  PubMed  Google Scholar 

  29. Bonizzi, G. et al. Activation of IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO J. 23, 4202–4210 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lernbecher, T., Kistler, B. & Wirth, T. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J. 13, 4060–4069 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dobrzanski, P., Ryseck, R.P. & Bravo, R. Differential interactions of Rel-NF-κB complexes with IκBα determine pools of constitutive and inducible NF-κB activity. EMBO J. 13, 4608–4616 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fusco, A.J. et al. NF-κB p52:RelB heterodimer recognizes two classes of κB sites with two distinct modes. EMBO Rep. 10, 152–159 (2009).

    CAS  PubMed  Google Scholar 

  33. Moorthy, A.K., Huang, D.B., Wang, V.Y., Vu, D. & Ghosh, G. X-ray structure of a NF-κB p50/RelB/DNA complex reveals assembly of multiple dimers on tandem κB sites. J. Mol. Biol. 373, 723–734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weih, F., Warr, G., Yang, H. & Bravo, R. Multifocal defects in immune responses in RelB-deficient mice. J. Immunol. 158, 5211–5218 (1997).

    CAS  PubMed  Google Scholar 

  35. Sasaki, C.Y., Ghosh, P. & Longo, D.L. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J. Biol. Chem. 286, 1093–1102 (2011).

    CAS  PubMed  Google Scholar 

  36. Bergqvist, S. et al. Kinetic enhancement of NF-κBxDNA dissociation by IκBα. Proc. Natl. Acad. Sci. USA 106, 19328–19333 (2009).

    CAS  PubMed  Google Scholar 

  37. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    CAS  Google Scholar 

  38. O'Dea, E.L., Kearns, J.D. & Hoffmann, A. UV as an amplifier rather than inducer of NF-κB activity. Mol. Cell 30, 632–641 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Dea, E.L. et al. A homeostatic model of IκB metabolism to control constitutive NF-κB activity. Mol. Syst. Biol. 3, 111 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Kearns, J.D., Basak, S., Werner, S.L., Huang, C.S. & Hoffmann, A. IκBepsilon provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. J. Cell Biol. 173, 659–664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    CAS  PubMed  Google Scholar 

  42. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    CAS  PubMed  Google Scholar 

  43. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, C.S. et al. The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50. Sci. Signal. 4, ra11 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Sasik, R., Woelk, C.H. & Corbeil, J. Microarray truths and consequences. J. Mol. Endocrinol. 33, 1–9 (2004).

    CAS  PubMed  Google Scholar 

  46. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    CAS  PubMed  Google Scholar 

  47. Saeed, A.I. et al. TM4 microarray software suite. Methods Enzymol. 411, 134–193 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Tao and G. Ghosh (University of California San Diego) for plasmids and recombinant proteins, S. Basak, A. Wu, P. Loriaux, R. Tsui for computational modeling advice, and C. Brown and M. Karin (University of California San Diego) for Traf3−/− embryos. This study was supported by GM085763 (A.H.), GM071573 (A.H.), AI090935 (A.H.), GM085325 (J.P.) and AI081923 (E.I.Z.).

Author information

Authors and Affiliations

Authors

Contributions

V.F.-S.S. and A.H. designed the study. V.F.-S.S. and M.M. carried out all experimental work with assistance from J.Q.H., T.Y., R.F. and M.A., and guidance from E.I.Z. and A.H. J.D.-T. and J.D.K. carried out the computational modeling work and J.P. the bioinformatic analysis. V.F.-S.S. and A.H. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Alexander Hoffmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3, Supplementary Note (PDF 2909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, VS., Davis-Turak, J., Macal, M. et al. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways. Nat Immunol 13, 1162–1170 (2012). https://doi.org/10.1038/ni.2446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing