Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27

Abstract

Type 1 regulatory T cells (Tr1 cells ) that produce interleukin 10 (IL-10) are instrumental in the prevention of tissue inflammation, autoimmunity and graft-versus-host disease. The transcription factor c-Maf is essential for the induction of IL-10 by Tr1 cells, but the molecular mechanisms that lead to the development of these cells remain unclear. Here we show that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which was induced by IL-27, acted in synergy with c-Maf to promote the development of Tr1 cells. After T cell activation under Tr1-skewing conditions, the AhR bound to c-Maf and promoted transactivation of the Il10 and Il21 promoters, which resulted in the generation of Tr1 cells and the amelioration of experimental autoimmune encephalomyelitis. Manipulating AhR signaling could therefore be beneficial in the resolution of excessive inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-27 upregulates AhR in Tr1 cells.
Figure 2: AhR regulates IL-10 production in Tr1 cells induced by TGF-β and IL-27.
Figure 3: AhR signaling dictates IL-21 secretion in Tr1 cells.
Figure 4: AhR and c-Maf transactivate the Il10 and Il21 promoters in Tr1 cells.
Figure 5: AhR controls the generation of Tr1 cells in vivo.
Figure 6: AhR controls the IL-27-mediated inhibition of EAE.

Similar content being viewed by others

References

  1. Roncarolo, M.G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 7, 929–936 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Stumhofer, J.S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fitzgerald, D.C. et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 8, 1372–1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Murugaiyan, G. et al. IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+ T cells. J. Immunol. 183, 2435–2443 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Spolski, R., Kim, H.P., Zhu, W., Levy, D.E. & Leonard, W.J. IL-21 mediates suppressive effects via its induction of IL-10. J. Immunol. 182, 2859–2867 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Pot, C., Apetoh, L., Awasthi, A. & Kuchroo, V.K. Molecular pathways in the induction of interleukin-27-driven regulatory type 1 cells. J. Interferon Cytokine Res. 30, 381–388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wurster, A.L. et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J. Exp. Med. 196, 969–977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coquet, J.M., Chakravarti, S., Smyth, M.J. & Godfrey, D.I. Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J. Immunol. 180, 7097–7101 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, P.B., Galeazzi, D.R., Fisher, J.M. & Whitlock, J.P. Jr. Control of cytochrome P1–450 gene expression by dioxin. Science 227, 1499–1502 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, J., Madan, R., Karp, C.L. & Braciale, T.J. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat. Med. 15, 277–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerkvliet, N.I. et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3 T cells in pancreatic lymph nodes. Immunotherapy 1, 539–547 (2009).

    CAS  PubMed  Google Scholar 

  23. Funatake, C.J., Marshall, N.B., Steppan, L.B., Mourich, D.V. & Kerkvliet, N.I. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+CD25+ cells with characteristics of regulatory T cells. J. Immunol. 175, 4184–4188 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R.A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Whitlock, J.P. Jr. Induction of cytochrome P4501A1. Annu. Rev. Pharmacol. Toxicol. 39, 103–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Chiaro, C.R., Morales, J.L., Prabhu, K.S. & Perdew, G.H. Leukotriene A4 metabolites are endogenous ligands for the Ah receptor. Biochemistry 47, 8445–8455 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, D.W. et al. The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene 19, 5498–5506 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Klinge, C.M., Kaur, K. & Swanson, H.I. The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRalpha1. Arch. Biochem. Biophys. 373, 163–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Okey, A.B., Vella, L.M. & Harper, P.A. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1–450 by 3-methylcholanthrene. Mol. Pharmacol. 35, 823–830 (1989).

    CAS  PubMed  Google Scholar 

  31. Fitzgerald, D.C. et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 179, 3268–3275 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nicholson, L.B., Greer, J.M., Sobel, R.A., Lees, M.B. & Kuchroo, V.K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3, 397–405 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Morari, J. et al. The role of proliferator-activated receptor γ coactivator-1α in the fatty-acid-dependent transcriptional control of interleukin-10 in hepatic cells of rodents. Metabolism 59, 215–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Monteiro, P. et al. AhR- and c-maf-dependent induction of β7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem. Biophys. Res. Commun. 358, 442–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Manel, N., Unutmaz, D. & Littman, D.R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolk, K., Witte, E., Witte, K., Warszawska, K. & Sabat, R. Biology of interleukin-22. Semin. Immunopathol. 32, 17–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Heath-Pagliuso, S. et al. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37, 11508–11515 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi, S. et al. A role for the aryl hydrocarbon receptor and the dioxin TCDD in rheumatoid arthritis. Rheumatology (Oxford) 47, 1317–1322 (2008).

    Article  CAS  Google Scholar 

  39. Kong, L.Y., Luster, M.I., Dixon, D., O'Grady, J. & Rosenthal, G.J. Inhibition of lung immunity after intratracheal instillation of benzo(a)pyrene. Am. J. Respir. Crit. Care Med. 150, 1123–1129 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Allan, L. & Sherr, D. Suppression of plasma cell differentiation by benzo[a]pyrene, an environmental pollutant. Environ Health J. 9, 15 (2010).

    Article  Google Scholar 

  41. Camacho, I.A., Nagarkatti, M. & Nagarkatti, P.S. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces Fas-dependent activation-induced cell death in superantigen-primed T cells. Arch. Toxicol. 76, 570–580 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Head, J.L. & Lawrence, B.P. The aryl hydrocarbon receptor is a modulator of anti-viral immunity. Biochem. Pharmacol. 77, 642–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Marshall, N.B., Vorachek, W.R., Steppan, L.B., Mourich, D.V. & Kerkvliet, N.I. Functional characterization and gene expression analysis of CD4+CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Immunol. 181, 2382–2391 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Ryu, H.Y. et al. Environmental chemical-induced bone marrow B cell apoptosis: death receptor-independent activation of a caspase-3 to caspase-8 pathway. Mol. Pharmacol. 68, 1087–1096 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Schneider, D., Manzan, M.A., Yoo, B.S., Crawford, R.B. & Kaminski, N. Involvement of Blimp-1 and AP-1 dysregulation in the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells. Toxicol. Sci. 108, 377–388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh, N.P., Nagarkatti, M. & Nagarkatti, P. Primary peripheral T cells become susceptible to 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated apoptosis in vitro upon activation and in the presence of dendritic cells. Mol. Pharmacol. 73, 1722–1735 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell–like and Foxp3+ regulatory T cells. Nat. Immunol. advance online publication, doi:10.1038/ni.1915 (1 August 2010).

  48. Ho, I.C., Lo, D. & Glimcher, L.H. c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J. Exp. Med. 188, 1859–1866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt, J.V., Su, G.H., Reddy, J.K., Simon, M.C. & Bradfield, C.A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 93, 6731–6736 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Quintana, F.J. et al. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PLoS One 5, e9478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.C. Miaw (National Taiwan University College of Medicine) for the IL-21 reporter construct; J. Xu (Mount Sinai School of Medicine) for the IL-10 reporter construct; I-C. Ho (Brigham and Women's Hospital, Harvard Medical School) for Maf-transgenic mice; D. Littman (The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine) for the vector overexpressing AhR-GFP; C. Karp (Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine) for IL-10–enhanced green fluorescent protein reporter mice; and D. Kozoriz for cell sorting. Supported by the US National Institutes of Health (R37NS030843, P01NS038037, P01AI056299 and P01AI039671 to V.K.K.; AI435801 and NS38037 to H.L.W.; 1K99AI075285 to F.J.Q.; and PO1-ES11624 to D.H.S.), the National Multiple Sclerosis Society (RG4111A1 to F.J.Q.), the European Molecular Biology Organization (L.A.), the Harvard Medical School Office for Diversity and Community Partnership (F.J.Q.), the Swiss National Science Foundation (N.J., and SFGBM/PASMA 118720/1 to C.P.) and the Novartis Foundation (C.P.).

Author information

Authors and Affiliations

Authors

Contributions

L.A., F.J.Q. and C.P. did in vitro and in vivo experiments and wrote the manuscript; N.J. did in vivo experiments; S.X., D.K. and E.J.B. did in vitro experiments; D.H.S. provided reagents and advice; and H.L.W. and V.K.K. supervised the study, edited the manuscript and contributed equally to this manuscript.

Corresponding authors

Correspondence to Howard L Weiner or Vijay K Kuchroo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apetoh, L., Quintana, F., Pot, C. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11, 854–861 (2010). https://doi.org/10.1038/ni.1912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing