Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The receptor S1P1 overrides regulatory T cell–mediated immune suppression through Akt-mTOR

Abstract

Regulatory T cells (Treg cells) are critically involved in maintaining immunological tolerance, but this potent suppression must be 'quenched' to allow the generation of adaptive immune responses. Here we report that sphingosine 1-phosphate (S1P) receptor type 1 (S1P1) delivers an intrinsic negative signal to restrain the thymic generation, peripheral maintenance and suppressive activity of Treg cells. Combining loss- and gain-of-function genetic approaches, we found that S1P1 blocked the differentiation of thymic Treg precursors and function of mature Treg cells and affected Treg cell–mediated immune tolerance. S1P1 induced selective activation of the Akt-mTOR kinase pathway to impede the development and function of Treg cells. Dynamic regulation of S1P1 contributed to lymphocyte priming and immune homeostasis. Thus, by antagonizing Treg cell–mediated immune suppression, the lipid-activated S1P1-Akt-mTOR pathway orchestrates adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S1P1 negatively regulates the thymic Foxp3+ Treg population.
Figure 2: S1P1 blocks the thymic differentiation of Treg cells.
Figure 3: Enhanced peripheral population and suppressive activity of S1P1-knockout Treg cells.
Figure 4: Diminished suppressive activity of S1P1-Tg Treg cells in vitro and in vivo.
Figure 5: S1P1-Tg mice show disrupted immune homeostasis and develop age-related autoimmunity due to defects in the Treg cell compartment.
Figure 6: S1P1 induces activation of Akt-mTOR to inhibit the development and function of Treg cells.
Figure 7: S1P1 is necessary for Akt activation in Treg cells.
Figure 8: Different regulation of S1P1 expression in Treg cells and Tconv cells.

Similar content being viewed by others

References

  1. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  Google Scholar 

  2. Zheng, Y. & Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8, 457–462 (2007).

    Article  CAS  Google Scholar 

  3. Campbell, D.J. & Ziegler, S.F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat. Rev. Immunol. 7, 305–310 (2007).

    Article  CAS  Google Scholar 

  4. Tang, Q. & Bluestone, J.A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).

    Article  CAS  Google Scholar 

  5. Shevach, E.M. et al. The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells. Immunol. Rev. 212, 60–73 (2006).

    Article  CAS  Google Scholar 

  6. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  7. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  Google Scholar 

  8. Vignali, D.A., Collison, L.W. & Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  Google Scholar 

  9. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  10. Yang, Y., Huang, C.T., Huang, X. & Pardoll, D.M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004).

    Article  CAS  Google Scholar 

  11. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  Google Scholar 

  12. Sutmuller, R.P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    Article  CAS  Google Scholar 

  13. Liu, H., Komai-Koma, M., Xu, D. & Liew, F.Y. Toll-like receptor 2 signaling modulates the functions of CD4+CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 103, 7048–7053 (2006).

    Article  CAS  Google Scholar 

  14. Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  Google Scholar 

  15. Rosen, H. et al. Modulating tone: the overture of S1P receptor immunotherapeutics. Immunol. Rev. 223, 221–235 (2008).

    Article  CAS  Google Scholar 

  16. Rivera, J., Proia, R.L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763 (2008).

    Article  CAS  Google Scholar 

  17. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  Google Scholar 

  18. Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  Google Scholar 

  19. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  20. Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    Article  CAS  Google Scholar 

  21. Chi, H. & Flavell, R.A. Cutting edge: regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J. Immunol. 174, 2485–2488 (2005).

    Article  CAS  Google Scholar 

  22. Graler, M.H., Huang, M.C., Watson, S. & Goetzl, E.J. Immunological effects of transgenic constitutive expression of the type 1 sphingosine 1-phosphate receptor by mouse lymphocytes. J. Immunol. 174, 1997–2003 (2005).

    Article  Google Scholar 

  23. Ishii, I., Fukushima, N., Ye, X. & Chun, J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73, 321–354 (2004).

    Article  CAS  Google Scholar 

  24. Sawicka, E. et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J. Immunol. 175, 7973–7980 (2005).

    Article  CAS  Google Scholar 

  25. Fontenot, J.D., Dooley, J.L., Farr, A.G. & Rudensky, A.Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    Article  CAS  Google Scholar 

  26. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  Google Scholar 

  27. Burchill, M.A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    Article  CAS  Google Scholar 

  28. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  29. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R.L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).

    Article  CAS  Google Scholar 

  30. Theofilopoulos, A.N., Koundouris, S., Kono, D.H. & Lawson, B.R. The role of IFN-γ in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 3, 136–141 (2001).

    Article  CAS  Google Scholar 

  31. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  32. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  Google Scholar 

  33. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  Google Scholar 

  34. Knight, Z.A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733–747 (2006).

    Article  CAS  Google Scholar 

  35. Nombela-Arrieta, C. et al. A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J. Exp. Med. 204, 497–510 (2007).

    Article  CAS  Google Scholar 

  36. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  Google Scholar 

  37. Miyara, M. & Sakaguchi, S. Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med. 13, 108–116 (2007).

    Article  CAS  Google Scholar 

  38. Ledgerwood, L.G. et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol. 9, 42–53 (2008).

    Article  CAS  Google Scholar 

  39. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  Google Scholar 

  40. Lund, J.M., Hsing, L., Pham, T.T. & Rudensky, A.Y. Coordination of early protective immunity to viral infection by regulatory T cells. Science 320, 1220–1224 (2008).

    Article  CAS  Google Scholar 

  41. Takabe, K., Paugh, S.W., Milstien, S. & Spiegel, S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

    Article  CAS  Google Scholar 

  42. Bensinger, S.J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol. 172, 5287–5296 (2004).

    Article  CAS  Google Scholar 

  43. Crellin, N.K., Garcia, R.V. & Levings, M.K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109, 2014–2022 (2007).

    Article  CAS  Google Scholar 

  44. Sehrawat, S. & Rouse, B.T. Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-Induced conversion of T cells to become Foxp3+ regulators. J. Immunol. 180, 7636–7647 (2008).

    Article  CAS  Google Scholar 

  45. Daniel, C. et al. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J. Immunol. 178, 2458–2468 (2007).

    Article  CAS  Google Scholar 

  46. Payne, S.G. et al. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109, 1077–1085 (2007).

    Article  CAS  Google Scholar 

  47. Wan, Y.Y., Chi, H., Xie, M., Schneider, M.D. & Flavell, R.A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat. Immunol. 7, 851–858 (2006).

    Article  CAS  Google Scholar 

  48. Mitchell, T.C. et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nat. Immunol. 2, 397–402 (2001).

    Article  CAS  Google Scholar 

  49. Menon, S. et al. COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat. Immunol. 8, 1236–1245 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Rudensky (University of Washington) for Foxp3gfp 'knock-in' mice; D. Hildeman (University of Cincinnati) for dominant negative and constitutively active Akt retroviral constructs; S. Shrestha for help with genotyping; M. McGargill for help with the FTOC procedure; R. Cross and G. Lennon for cell sorting; and D. Green and D. Vignali for scientific discussions and reagents. Supported by the US National Institutes of Health (H.C.), the Arthritis Foundation (H.C.), the Arthritis National Research Foundation (H.C.), the American Lebanese Syrian Associated Charities (H.C.) and the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (R.L.P.).

Author information

Authors and Affiliations

Authors

Contributions

G.L. designed and did the experiments with cells and mice, analyzed data and contributed to writing the manuscript; S.B. did retroviral transduction of bone marrow cells and reconstitution and managed the mouse colony; G.H. and S.B. contributed to real-time PCR analysis; K.B. analyzed and assigned scores to histology data; R.L.P. and R.A.F. provided animal models; and H.C. designed experiments, analyzed data, wrote the manuscript and provided overall direction.

Corresponding author

Correspondence to Hongbo Chi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 (PDF 3117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Burns, S., Huang, G. et al. The receptor S1P1 overrides regulatory T cell–mediated immune suppression through Akt-mTOR. Nat Immunol 10, 769–777 (2009). https://doi.org/10.1038/ni.1743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing