Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans

Abstract

Precambrian banded iron formations provide an extensive archive of pivotal environmental changes and the evolution of biological processes on early Earth. The formations are characterized by bands ranging from micrometre- to metre-scale layers of alternating iron- and silica-rich minerals. However, the nature of the mechanisms of layer formation is unknown. To properly evaluate this archive, the physical, chemical and/or biological triggers for the deposition of both the iron- and silica-rich layers, and crucially their alternate banding, must be identified. Here we use laboratory experiments and geochemical modelling to study the potential for a microbial mechanism in the formation of alternating iron–silica bands. We find that the rate of biogenic iron(III) mineral formation by iron-oxidizing microbes reaches a maximum between 20 and 25 C. Decreasing or increasing water temperatures slow microbial iron mineral formation while promoting abiotic silica precipitation. We suggest that natural fluctuations in the temperature of the ocean photic zone during the period when banded iron formations were deposited could have led to the primary layering observed in these formations by successive cycles of microbially catalysed iron(III) mineral deposition and abiotic silica precipitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature change drives both the biotic precipitation of Fe(III) minerals and the abiotic precipitation of silica.
Figure 2: Possible deposition of alternating iron and silicate mineral layers in BIFs as triggered by temperature variations in ocean waters.

Similar content being viewed by others

References

  1. Trendall, A. F. The significance of iron-formation in the Precambrian stratigraphic record. Int. Assoc. Sedimentol. Spec. Publ. 33, 33–66 (2002).

    Google Scholar 

  2. Klein, C. Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 1473–1499 (2005).

    Article  Google Scholar 

  3. Trendall, A. F. Three great basins of Precambrian banded iron formation deposition: A systematic comparison. Geol. Soc. Am. Bull. 79, 1527–1544 (1968).

    Article  Google Scholar 

  4. Morris, R.C & Horwitz, R. C. The origin of the iron-formation-rich Hamersley Group of Western Australia—deposition on a platform. Precambr. Res. 21, 273–297 (1983).

    Article  Google Scholar 

  5. Holland, H. D. The oceans: A possible source of iron in iron-formations. Econ. Geol. 68, 1169–1172 (1973).

    Article  Google Scholar 

  6. Morris, R. C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr. Res. 60, 243–286 (1993).

    Article  Google Scholar 

  7. Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol. Soc. Am. Bull. 117, 835–845 (2005).

    Article  Google Scholar 

  8. Cloud, P. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160, 729–736 (1968).

    Article  Google Scholar 

  9. Holland, H. D. Vocanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  10. Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature 303, 163–164 (1983).

    Article  Google Scholar 

  11. Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

    Article  Google Scholar 

  12. Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Rev. 4, 752–764 (2006).

    Google Scholar 

  13. Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993).

    Article  Google Scholar 

  14. Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiol. 172, 116–124 (1999).

    Article  Google Scholar 

  15. Straub, K. L., Rainey, F. R. & Widdel, F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Bacteriol. 49, 729–735 (1999).

    Article  Google Scholar 

  16. Konhauser, K. O. et al. Could bacteria have formed the Precambrian banded iron formations? Geology 30, 1079–1082 (2002).

    Article  Google Scholar 

  17. Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005).

    Article  Google Scholar 

  18. Hegler, F., Posth, N. R., Jiang, J. & Kappler, A. Physiology of phototrophic iron(II)-oxidizing bacteria-implications for modern and ancient environments. FEMS Microbiol. Ecol. (in the press).

  19. Kappler, A. & Newman, D. K. Formation of Fe (III) minerals by Fe(II) oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1217–1226 (2004).

    Article  Google Scholar 

  20. Konhauser, K., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).

    Article  Google Scholar 

  21. Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984).

    Article  Google Scholar 

  22. Baur, M. E., Hayes, J. M., Studley, S. A. & Walter, M. R. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron formations in the Hamersley Group of Western Australia. Econ. Geol. 80, 270–282 (1985).

    Article  Google Scholar 

  23. Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J. & Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151–169 (2008).

    Article  Google Scholar 

  24. Xiong, J. Photosynthesis: What colour was its origin? Genome Biol. 7, 245.1–245.5 (2006).

    Article  Google Scholar 

  25. Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832 (2005).

    Article  Google Scholar 

  26. Bosak, T., Greene, S. E. & Newman, D. K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5, 119–126 (2007).

    Article  Google Scholar 

  27. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

    Article  Google Scholar 

  28. Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).

    Article  Google Scholar 

  29. Knauth, P. L. & Donald, R. Lowe. High Archaen climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003).

    Article  Google Scholar 

  30. Knauth, L. P. Temperature and salinity history of the Precambrian Ocean: Implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).

    Article  Google Scholar 

  31. Robert, F. & Chaussidon, M. A Paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972 (2006).

    Article  Google Scholar 

  32. Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006).

    Article  Google Scholar 

  33. Jaffres, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007).

    Article  Google Scholar 

  34. Shields, G. A. & Kasting, J. Evidence for hot early oceans? Nature 447, E1–E2 (2007).

    Article  Google Scholar 

  35. Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).

    Article  Google Scholar 

  36. Gross, G. A. Primary features in cherty iron-formations. Sedim. Geol. 7, 241–261 (1971).

    Article  Google Scholar 

  37. Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    Article  Google Scholar 

  38. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993).

    Article  Google Scholar 

  39. Emery, W. J., Talley, L. D. & Pickard, G. L. Descriptive Physical Oceanography (Elsevier, Amsterdam, 2006).

    Google Scholar 

  40. Garrels, R. M. A model for the deposition of the microbanded Precambrian iron formations. Am. J. Sci. 287, 81–105 (1987).

    Article  Google Scholar 

  41. Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).

    Google Scholar 

  42. Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article  Google Scholar 

  43. Eaton, A., Clescerl, L., Rice, E. & Greenberg, A. (eds) Standard Methods for the Examination of Waters and Wastewaters 21st edn (American Public Health Association, Washington, 2005).

Download references

Acknowledgements

This research was supported by an Emmy-Noether fellowship and a research grant (KA 1736/4-1) from the German Research Foundation (DFG) to A.K. and the International PhD program GeoEnviron funded by the German Academic Exchange Service (DAAD) to N.R.P., as well as a Natural Science and Engineering Research Council (NSERC) Discovery Grant to K.O.K. We would like to thank M. Kucera and M. Siccha for their help with oceanographic data. The synchrotron-based computer tomography imaging shown in the Supplementary Information was carried out at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland with the help of M. Stampanoni and F. Marone. B. Schink, B. Kopp, D. Newman, J. Kasting, J. Wisdom, C. Johnson, P. Knauth, G. Neukum, S. Jordan, U. Bastian and C. Pasquero helped us immensely with their comments, which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kappler.

Supplementary information

Supplementary Information

Supplementary figures S1-S7 (PDF 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posth, N., Hegler, F., Konhauser, K. et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geosci 1, 703–708 (2008). https://doi.org/10.1038/ngeo306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing