Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

Abstract

The circulation and internal structure of the oceans exert a strong influence on Earth’s climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss1. Circulation change, particularly in the Atlantic Ocean, is widely suggested2,3,4,5 to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago6. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35–5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3–2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification7 and/or extensive sea-ice cover5 was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mixing history of northern- versus southern-sourced waters in the deep North Atlantic (3,400 m) for the past 3.3 Myr based on benthic foraminiferal carbon isotopes.
Figure 2: Mixing history of northern- versus southern-sourced waters in the deep North Atlantic, for 3.3–2.4 Ma and the Last Glacial–Holocene (35–5 ka).
Figure 3: Incursions of southern-sourced water into the deep North Atlantic (3,400 m) and relation to NHG intensification.

Similar content being viewed by others

References

  1. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  2. Bartoli, G. et al. Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth Planet. Sci. Lett. 237, 33–44 (2005).

    Article  Google Scholar 

  3. Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998).

    Article  Google Scholar 

  4. Woodard, S. C. et al. Antarctic role in Northern Hemisphere glaciation. Science 346, 847–851 (2014).

    Article  Google Scholar 

  5. McKay, R. et al. Antarctic and Southern Ocean influences on late Pliocene global cooling. Proc. Natl Acad. Sci. USA 109, 6423–6428 (2012).

    Article  Google Scholar 

  6. Bailey, I. et al. An alternative suggestion for the Pliocene onset of major Northern Hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 75, 181–194 (2013).

    Article  Google Scholar 

  7. Sigman, D. M., Jaccard, S. L. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004).

    Article  Google Scholar 

  8. Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the Last Glacial Cycle. Nature 517, 73–76 (2015).

    Article  Google Scholar 

  9. Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).

    Article  Google Scholar 

  10. Lisiecki, L. E. & Raymo, M. E. A. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  11. Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 97, 353–368 (1990).

    Article  Google Scholar 

  12. Raymo, M. E., Hodell, D. A. & Jansen, E. Response of deep ocean circulation to initiation of Northern Hemisphere glaciation (3–2 Ma). Paleoceanography 7, 645–672 (1992).

    Article  Google Scholar 

  13. Venz, K. A. & Hodell, D. A. New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 197–220 (2002).

    Article  Google Scholar 

  14. Hodell, D. A. & Venz-Curtis, K. A. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7, Q09001 (2006).

    Article  Google Scholar 

  15. Lisiecki, L. E. Atlantic overturning responses to obliquity and precession over the last 3 Myr. Paleoceanography 29, 71–86 (2014).

    Article  Google Scholar 

  16. Lang, D. C. et al. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quat. Sci. Rev. 93, 125–141 (2014).

    Article  Google Scholar 

  17. Frank, M. Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev. Geophys. 40, 1-1–1-38 (2002).

    Article  Google Scholar 

  18. Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75–78 (2010).

    Article  Google Scholar 

  19. Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    Article  Google Scholar 

  20. Gutjahr, M. & Lippold, J. Early arrival of southern source water in the deep North Atlantic prior to Heinrich event 2. Paleoceanography 26, PA2101 (2011).

    Article  Google Scholar 

  21. Naafs, B. D. A., Hefter, J., Grutzner, J. & Stein, R. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanography 28, 153–163 (2013).

    Article  Google Scholar 

  22. Roberts, N. L. & Piotrowski, A. M. Radiogenic Nd isotope labeling of the northern NE Atlantic during MIS 2. Earth Planet. Sci. Lett. 423, 125–133 (2015).

    Article  Google Scholar 

  23. Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 41, 2108–2116 (2014).

    Article  Google Scholar 

  24. Hillenbrand, C.-D. & Cortese, G. Polar stratification: a critical view from the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 240–252 (2006).

    Article  Google Scholar 

  25. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  26. Jansen, E., Fronval, T., Rack, F. & Channell, J. E. T. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000).

    Article  Google Scholar 

  27. Balco, G. & Rovey, C. W. II Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology 38, 795–798 (2010).

    Article  Google Scholar 

  28. Brigham-Grette, J. et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science 340, 1421–1426 (2013).

    Article  Google Scholar 

  29. Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009).

    Article  Google Scholar 

  30. Mix, A. C. et al. Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): local and global climate changes. Proc. ODP Sci. Results 138, 371–412 (1995).

    Google Scholar 

  31. Bolton, C. T. et al. Millennial-scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene. Paleoceanography 25, PA4218 (2010).

    Article  Google Scholar 

  32. Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317, 8–19 (2012).

    Article  Google Scholar 

  33. Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E. & Röhl, U. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (640 ka)? Paleoceanography 23, PA4218 (2008).

    Article  Google Scholar 

  34. Cohen, A. S., Onions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure-temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).

    Article  Google Scholar 

  35. Pin, C., Briot, D., Bassin, C. & Poitrasson, F. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta 298, 209–217 (1994).

    Article  Google Scholar 

  36. Vance, D. & Thirlwall, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).

    Article  Google Scholar 

  37. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  38. MacLeod, K. G., Martin, E. E. & Blair, S. W. Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36, 811–814 (2008).

    Article  Google Scholar 

  39. Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. & Fairbanks, R. G. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307, 1933–1938 (2005).

    Article  Google Scholar 

  40. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org

  41. Goldstein, S. L. & Hemming, S. R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise Geochem. 6, 453–489 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples provided by IODP (sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc). We thank the shipboard party of IODP Expedition 306. We are grateful to W. Hale, A. Weulbers, A. Milton, M. Cooper, M. Spencer and A. Michalik for laboratory assistance, D. Murphy for assistance with fish debris identification and C. Ullmann for assistance with data plotting. We also thank M. Hain and M. Raymo for helpful discussions. This research was supported by the Natural Environment Research Council (NERC) through a PhD studentship to D.C.L., a NERC UK IODP grant NE/F00141X/1 to P.A.W. and I.B., a Royal Society Wolfson Research Merit Award to P.A.W. and NERC grant NE/H006273/1 to G.L.F.

Author information

Authors and Affiliations

Authors

Contributions

I.B. and P.A.W. designed the study. D.C.L. picked, prepared and analysed fish debris for their Nd isotope compositions with guidance from M.G. I.B. generated the Last Glacial–Holocene IRD record. D.C.L. made initial interpretations of the data. I.B. and P.A.W. wrote the main text with input from G.L.F. and M.G. T.B.C. and G.L.F. performed Monte Carlo simulations and statistical analyses. All authors discussed the results.

Corresponding author

Correspondence to Ian Bailey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 10294 kb)

Supplementary Information

Supplementary Information (XLSX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, D., Bailey, I., Wilson, P. et al. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification. Nature Geosci 9, 375–379 (2016). https://doi.org/10.1038/ngeo2688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing