Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients

Subjects

Abstract

The dynamics of Earth’s mantle are not well known1. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density2,3. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward4,5. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission6 can be used to probe our planet’s deep mass structure. We construct global anomaly maps of the Earth’s gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north–south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500 km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east–west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-hydrostatic gravitational gradients.
Figure 2: Gravitational gradients of a subducted slab.
Figure 3: Y Y gravity gradients and S40RTS shear-velocity anomalies.
Figure 4: XX gravitational gradients and S40RTS and DR2012 shear-velocity anomalies.

Similar content being viewed by others

References

  1. Anderson, D. Top-down tectonics? Science 293, 2016–2018 (2001).

    Article  Google Scholar 

  2. Forte, A. & Mitrovica, J. X. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1053 (2001).

    Article  Google Scholar 

  3. Deschamps, F., Trampert, J. & Tackley, P. J. in Superplumes: Beyond Plate Tectonics (eds Yuen, D. A. et al.) 293–320 (Springer, 2007).

    Book  Google Scholar 

  4. Karato, S. & Karki, B. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res. 106, 21771–21783 (2001).

    Article  Google Scholar 

  5. Maupin, V. & Park, J. in Treatise on Geophysics Vol. 1 (eds Romanowicz, B. & Dziewonski, A. M.) 289–321 (Elsevier, 2007).

    Book  Google Scholar 

  6. Johannessen, J. et al. The European Gravity Field and Steady-State Ocean Circulation Explorer Satellite Mission: Its impact on geophysics. Surv. Geophys. 24, 339–386 (2003).

    Article  Google Scholar 

  7. Dziewonski, A. M. & Romanowicz, B. in Treatise on Geophysics Vol. 1 (eds Romanowicz, B. & Dziewonski, A. M.) 1–29 (Elsevier, 2007).

    Book  Google Scholar 

  8. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  9. Trampert, J., Deschamps, F., Resovsky, J. & Yuen, D. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004).

    Article  Google Scholar 

  10. Cadio, C. et al. Pacific geoid anomalies revisited in light of thermochemical oscillating domes in the lower mantle. Earth Planet. Sci. Lett. 306, 123–135 (2011).

    Article  Google Scholar 

  11. Mikhailov, V., Pajot, G., Diament, M. & Price, A. Tensor deconvolution: A method to locate equivalent sources from full tensor gravity data. Geophysics 72, 161–169 (2007).

    Article  Google Scholar 

  12. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  Google Scholar 

  13. Rummel, R., Yi, W. & Stummer, C. GOCE gravitational gradiometry. J. Geod. 85, 777–790 (2011).

    Article  Google Scholar 

  14. Fuchs, M. & Bouman, J. Rotation of GOCE gravity gradients to local frames. Geophys. J. Int. 187, 743–753 (2011).

    Article  Google Scholar 

  15. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model PREM. Phys. Earth Planet. Int. 25, 297–356 (1981).

    Article  Google Scholar 

  16. Lithgow-Bertelloni, C., Richards, M. A., Ricard, Y., O’Connell, R. J. & Engebretson, D. C. Toroidal-poloidal partitioning of plate motions since 120 My. Geophys. Res. Lett. 20, 375–378 (1993).

    Article  Google Scholar 

  17. Richards, M. A. & Engebretson, D. C. Large scale mantle convection and the history of subduction. Nature 355, 437–440 (1992).

    Article  Google Scholar 

  18. Van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).

    Article  Google Scholar 

  19. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    Article  Google Scholar 

  20. Rouby, H., Greff-Lefftz, M. & Besse, J. Mantle dynamics, geoid, inertia and TPW since 120 My. Earth Planet. Sci. Lett. 292, 301–311 (2010).

    Article  Google Scholar 

  21. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  Google Scholar 

  22. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  23. Ren, Y., Stutzmann, E., van der Hilst, R. D. & Besse, J. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. J. Geophys. Res. 112, B01302 (2007).

    Article  Google Scholar 

  24. Van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246–249 (1999).

    Article  Google Scholar 

  25. Collins, W. J. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet. Sci. Lett. 205, 225–237 (2003).

    Article  Google Scholar 

  26. Fukao, Y. et al. Stagnant slabs: A review. Annu. Rev. Earth Planet. Sci. 37, 19–46 (2009).

    Article  Google Scholar 

  27. Replumaz, A., Karason, H., van der Hilst, R. D., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103–115 (2004).

    Article  Google Scholar 

  28. Debayle, E. & Ricard, Y. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J. Geophys. Res. 117, B10308 (2012).

    Article  Google Scholar 

  29. Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998).

    Article  Google Scholar 

  30. Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115, B12310 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank CNES for financial support through the TOSCA committee, and ESA for access to the GOCE data. We thank J. Besse, O. de Viron and B. Romanowicz for important comments on our manuscript, and G. Hetenyi for discussions on the mantle structure below Tibet. We thank G. Métris for providing us with software for the differentiation of the spherical harmonics, and J. Penguen for assistance in the numerical computations. This is IPGP contribution 3470.

Author information

Authors and Affiliations

Authors

Contributions

I.P. and G.P-M. designed the study. I.P., G.P-M., M.G-L. and L.M. analysed the data and performed the geophysical modelling. M.D. and M.M. discussed and commented on the results and implications at all stages. I.P. wrote the manuscript with inputs from all co-authors. L.M. wrote Supplementary Section 2.

Corresponding author

Correspondence to Isabelle Panet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panet, I., Pajot-Métivier, G., Greff-Lefftz, M. et al. Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nature Geosci 7, 131–135 (2014). https://doi.org/10.1038/ngeo2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing