Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

The contribution of organics to atmospheric nanoparticle growth

Abstract

Aerosols have a strong, yet poorly quantified, effect on climate. The growth of the smallest atmospheric particles from diameters in the nanometre range to sizes at which they may act as seeds for cloud droplets is a key step linking aerosols to clouds and climate. In many environments, atmospheric nanoparticles grow by taking up organic compounds that are derived from biogenic hydrocarbon emissions. Several mechanisms may control this uptake. Condensation of low-volatility vapours and formation of organic salts probably dominate the very first steps of growth in particles close to 1 nm in diameter. As the particles grow further, formation of organic polymers and effects related to the phase of the particle probably become increasingly important. We suggest that dependence of particle growth mechanisms on particle size needs to be investigated more systematically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connections between volatile organic compound (VOC) emissions, nanoparticle growth, climate and air quality.
Figure 2: Particle formation event on 23 July 2010 in Hyytiälä, Finland4.
Figure 3: The processes influencing organic vapour uptake by atmospheric nanoparticles.

Similar content being viewed by others

References

  1. IPCC Climate Change 2007 − The Physical Science Basis: Contribution of Working Group I (Cambridge Univ. Press, 2007).

  2. Dusek, U. et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312, 1375–1378 (2006).

    Article  Google Scholar 

  3. Kulmala, M. et al. Formation and growth of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 35, 143–176 (2004).

    Article  Google Scholar 

  4. Williams, J. et al. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmos. Chem. Phys. 11, 10599–10618 (2011).

    Article  Google Scholar 

  5. Riipinen, I. et al. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 11, 3865–3878 (2011).

    Article  Google Scholar 

  6. Hirsikko, A. et al. Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environ. Res., 10, 357–369, (2005).

    Google Scholar 

  7. Kuang, C. et al. First size-dependent growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmos. Chem. Phys. Discuss. 11, 25427–25471 (2011).

    Article  Google Scholar 

  8. Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  Google Scholar 

  9. Guenther, A. et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892 (1995).

    Article  Google Scholar 

  10. Hoyle, C. R. et al. A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos. Chem. Phys. 11, 321–343 (2011).

    Article  Google Scholar 

  11. Sipilä, M. et al. Role of sulphuric acid in atmospheric nucleation. Science 327, 1243–1246 (2010).

    Article  Google Scholar 

  12. Kuang, C. et al. An improved criterion for new particle formation in diverse atmospheric environments. Atmos. Chem. Phys. 10, 8469–8480 (2010).

    Article  Google Scholar 

  13. Kurtén, T., Loukonen, V., Vehkamäki, H. & Kulmala, M. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 8, 4095–4103 (2008).

    Article  Google Scholar 

  14. Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011).

    Article  Google Scholar 

  15. Zhang, R., Khalizov, A. Wang, L. Hu, M. & Xu, W. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112, 1957–2011 (2012).

    Article  Google Scholar 

  16. Jung, J., Adams, P. J. & Pandis, S. N. Simulating the size distribution and chemical composition of ultrafine particles during nucleation events. Atmos. Environ. 40, 2248–2259 (2006).

    Article  Google Scholar 

  17. Zhang, R. et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proc. Natl Acad. Sci. 106, 17650–17654 (2009).

    Article  Google Scholar 

  18. Spracklen, D. V., Bonn, B. & Carslaw, K. S. Boreal forests, aerosols and the impacts on clouds and climate. Phil. Trans. R. Soc. A 366, 4613–4626 (2008).

    Article  Google Scholar 

  19. Tunved, P. et al. High natural aerosol loading over boreal forests. Science 312, 261–263 (2006).

    Article  Google Scholar 

  20. Laaksonen, A. et al. The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 8, 2657–2665 (2008).

    Article  Google Scholar 

  21. Smith, J. N. et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl Acad. Sci. 107, 6634–6639 (2010).

    Article  Google Scholar 

  22. Pierce, J. R. et al. Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmos. Chem. Phys. 11, 9019–9036 (2011).

    Article  Google Scholar 

  23. Hao, L. Q. et al. New particle formation from the oxidation of direct emissions of pine seedlings. Atmos. Chem. Phys. 9, 8121–8137 (2009).

    Article  Google Scholar 

  24. Makkonen, R. et al. Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmos. Chem. Phys. 9, 1747–1766 (2009).

    Article  Google Scholar 

  25. Pye, H. O. T. & Seinfeld, J. H. A global perspective on aerosol from low-volatility organic compounds. Atmos. Chem. Phys. 10, 4377–4401 (2010).

    Article  Google Scholar 

  26. Yu, F. A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: global scale implications, Atmos. Chem. Phys. 11, 1083–1099 (2011).

    Article  Google Scholar 

  27. Kulmala, M. et al. A new feedback mechanism linking forests, aerosols and climate. Atmos. Chem. Phys. 4, 557–562 (2004).

    Article  Google Scholar 

  28. Donahue, N. M., Trump, E. R., Pierce, J. R. & Riipinen, I. Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. Geophys. Res. Lett. 38, L16801 (2011).

    Article  Google Scholar 

  29. Barsanti, K. C., McMurry, P. H. & Smith, J. N. The potential contribution of organic salts to new particle growth. Atmos. Chem. Phys. 9, 2949–2957 (2009).

    Article  Google Scholar 

  30. Zhang, K. M. & Wexler, A. S. Hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res. 107, 4577 (2002).

    Google Scholar 

  31. Wang, L. et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nature Geosci. 3, 238–242 (2010).

    Article  Google Scholar 

  32. Allan, J. D. et al. Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an aerodyne aerosol mass spectrometer. Atmos. Chem. Phys. 6, 315–327 (2006).

    Article  Google Scholar 

  33. Ehn, M. et al. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid. Atmos. Chem. Phys. 7, 211–222 (2007).

    Article  Google Scholar 

  34. O'Dowd, C. D., Aalto, P., Hämeri, K., Kulmala, M. & Hoffmann, T. Atmospheric particles from organic vapours. Nature 416, 497–498 (2002).

    Article  Google Scholar 

  35. Bzdek, B. R., Zordan, C. ., Luther, G. W. & Johnston, M. V. Nanoparticle Chemical Composition During New Particle Formation. Aerosol Sci. Technol. 45, 1041–1048 (2011).

    Article  Google Scholar 

  36. Cappa, C. D. & Jimenez, J. L. Quantitative estimates of the volatility of ambient organic aerosol. Atmos. Chem. Phys. 10, 5409–5424 (2010).

    Article  Google Scholar 

  37. Booth, A. M. et al. Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS) system for vapour pressure measurements of low volatility organics. Atmos. Meas. Tech. 2, 355–361 (2009).

    Article  Google Scholar 

  38. Mäkelä, J. M. et al. Chemical composition of aerosol during particle formation events in boreal forest. Tellus B 53, 380–393 (2001).

    Article  Google Scholar 

  39. Ehn, M. et al. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10, 8513–8530 (2010).

    Article  Google Scholar 

  40. Russell, L. M., Bahadur, R. & Ziemann, P. J. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proc. Natl Acad. Sci. 108, 3516–3521 (2011).

    Article  Google Scholar 

  41. Kalberer, M. et al. Identification of polymers as major components of atmospheric organic aerosols. Science 303, 1659–1662 (2004).

    Article  Google Scholar 

  42. Lim, Y. B. et al. Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10, 10521–10539 (2010).

    Article  Google Scholar 

  43. Virtanen, A. et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467, 824–827 (2010).

    Article  Google Scholar 

  44. Virtanen, A. et al. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmos. Chem. Phys. 11, 8759–8766 (2011).

    Article  Google Scholar 

  45. Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M. & Zelenyuk, A. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl Acad. Sci. 108, 2190–2195 (2011).

    Article  Google Scholar 

  46. Cappa, C. D. & Wilson, K. R. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos. Chem. Phys. 11, 1895–1911 (2011).

    Article  Google Scholar 

  47. Shiraiwa, M., Ammann, M., Koop, T. & Pöschl, U. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl Acad. Sci. 108, 11003–11008 (2011).

    Article  Google Scholar 

  48. Ge, X., Wexler, A. S. & Clegg, S. L. Atmospheric amines — Part II. Thermodynamic properties and gas/particle partitioning. Atmos. Environ. 45, 561–577 (2011).

    Article  Google Scholar 

  49. Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C. & McMurry, P. H. Chemica; ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS. J. Geophys. Res. 115, D08205 (2010).

    Google Scholar 

  50. Holzinger, R. et al. Aerosol analysis using a thermal-desorption proton-transfer-reaction mass spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmos. Chem. Phys. 10, 2257–2267 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by European Research Council Grant ATMOGAIN (project no. 278277), Vetenskapsrådet, European FP7 Integrated project PEGASOS (project number 265148), Electric Power Research Institute (EPRI), US Department of Energy (DESC0007075), US National Science Foundation (AGS1136479 and CHE1012293), and Academy of Finland (project numbers 133872 and 139656) are gratefully acknowledged. Antti-Jussi Kieloaho, Theo Kurtén, Ulla Makkonen, Spyros N. Pandis, and Mikko Äijälä are acknowledged for their valuable input in the form of useful discussions and providing experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Riipinen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riipinen, I., Yli-Juuti, T., Pierce, J. et al. The contribution of organics to atmospheric nanoparticle growth. Nature Geosci 5, 453–458 (2012). https://doi.org/10.1038/ngeo1499

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing