Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genes required for ionizing radiation resistance in yeast

Abstract

The ability of Saccharomyces cerevisiae to tolerate ionizing radiation damage requires many DNA-repair and checkpoint genes, most having human orthologs. A genome-wide screen of diploid mutants homozygous with respect to deletions of 3,670 nonessential genes revealed 107 new loci that influence γ-ray sensitivity. Many affect replication, recombination and checkpoint functions. Nearly 90% were sensitive to other agents, and most new genes could be assigned to the following functional groups: chromatin remodeling, chromosome segregation, nuclear pore formation, transcription, Golgi/vacuolar activities, ubiquitin-mediated protein degradation, cytokinesis, mitochondrial activity and cell wall maintenance. Over 50% share homology with human genes, including 17 implicated in cancer, indicating that a large set of newly identified human genes may have related roles in the toleration of radiation damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: γ-ray sensitivity of genes required for toleration of ionizing radiation damage.
Figure 3: Possible functional interactions of genes affecting resistance to radiation.
Figure 2: Characterization of radiation-sensitive mutants.

Similar content being viewed by others

References

  1. Resnick, M.A. & Cox, B.S. Yeast as an honorary mammal. Mutat. Res. 451, 1–11 (2000).

    Article  CAS  Google Scholar 

  2. Yu, Z., Chen, J., Ford, B.N., Brackley, M.E. & Glickman, B.W. Human DNA repair systems: an overview. Environ. Mol. Mutagen. 33, 3–20 (1999).

    Article  CAS  Google Scholar 

  3. Foury, F. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10 (1997).

    Article  CAS  Google Scholar 

  4. Jelinsky, S.A., Estep, P., Church, G.M. & Samson, L.D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 20, 8157–8167 (2000).

    Article  CAS  Google Scholar 

  5. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  6. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  Google Scholar 

  7. Game, J.C. The Saccharomyces repair genes at the end of the century. Mutat. Res. 451, 277–293 (2000).

    Article  CAS  Google Scholar 

  8. Lewis, L.K. & Resnick, M.A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. 451, 71–89 (2000).

    Article  CAS  Google Scholar 

  9. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  10. Chan, T.F., Carvalho, J., Riles, L. & Zheng, X.F. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl Acad. Sci. USA 97, 13227–13232 (2000).

    Article  CAS  Google Scholar 

  11. Lovett, S.T. & Mortimer, R.K. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116, 547–553 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heude, M. & Fabre, F. a/α-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133, 489–498 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett, C.B., Snipe, J.R., Westmoreland, J.W. & Resnick, M.A. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol. Cell. Biol. 21, 5359–5373 (2001).

    Article  CAS  Google Scholar 

  14. Hughes, T.R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet. 25, 333–337 (2000).

    Article  CAS  Google Scholar 

  15. Ramotar, D., Popoff, S.C., Gralla, E.B. & Demple, B. Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol. Cell. Biol. 11, 4537–4544 (1991).

    Article  CAS  Google Scholar 

  16. Moore, C.W. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions. Cancer Res. 42, 929–933 (1982).

    CAS  PubMed  Google Scholar 

  17. Henry, N.L. et al. TFIIF–TAF–RNA polymerase II connection. Genes Dev. 8, 2868–2878 (1994).

    Article  CAS  Google Scholar 

  18. Welch, M.D. & Drubin, D.G. A nuclear protein with sequence similarity to proteins implicated in human acute leukemias is important for cellular morphogenesis and actin cytoskeletal function in Saccharomyces cerevisiae. Mol. Biol. Cell 5, 617–632 (1994).

    Article  CAS  Google Scholar 

  19. Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M. & Seraphin, B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 19, 1661–1671 (2000).

    Article  CAS  Google Scholar 

  20. Wang, X., Watt, P.M., Louis, E.J., Borts, R.H. & Hickson, I.D. Pat1: a topoisomerase II–associated protein required for faithful chromosome transmission in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 4791–4797 (1996).

    Article  CAS  Google Scholar 

  21. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000).

    Article  CAS  Google Scholar 

  22. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. & Fink, G.R. Ploidy regulation of gene expression. Science 285, 251–254 (1999).

    Article  CAS  Google Scholar 

  23. Mayer, M.L., Gygi, S.P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    Article  CAS  Google Scholar 

  24. Moore, J.K. & Haber, J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  25. Bartsch, S., Kang, L.E. & Symington, L.S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 20, 1194–1205 (2000).

    Article  CAS  Google Scholar 

  26. Aguilera, A. & Klein, H.L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Negritto, M.C., Qiu, J., Ratay, D.O., Shen, B. & Bailis, A.M. Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol. Cell. Biol. 21, 2349–2358 (2001).

    Article  CAS  Google Scholar 

  28. Perkins, E.L., Sterling, J.F., Hashem, V.I. & Resnick, M.A. Yeast and human genes that affect the Escherichia coli SOS response. Proc. Natl Acad. Sci. USA 96, 2204–2209 (1999).

    Article  CAS  Google Scholar 

  29. Stevenson, L.F., Kennedy, B.K. & Harlow, E. A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes. Proc. Natl Acad. Sci. USA 98, 3946–3951 (2001).

    Article  CAS  Google Scholar 

  30. Weinert, T.A. & Hartwell, L.H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    Article  CAS  Google Scholar 

  31. Toczyski, D.P., Galgoczy, D.J. & Hartwell, L.H. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90, 1097–1106 (1997).

    Article  CAS  Google Scholar 

  32. Fasullo, M., Bennett, T., AhChing, P. & Koudelik, J. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol. Cell. Biol. 18, 1190–1200 (1998).

    Article  CAS  Google Scholar 

  33. Davies, A.A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  Google Scholar 

  34. Broomfield, S., Hryciw, T. & Xiao, W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486, 167–184 (2001).

    Article  CAS  Google Scholar 

  35. Paglin, S. et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 61, 439–444 (2001).

    CAS  PubMed  Google Scholar 

  36. Coss, R.A., Bamburg, J.R. & Dewey, W.C. The effects of X irradiation on microtubule assembly in vitro. Radiat. Res. 85, 99–115 (1981).

    Article  CAS  Google Scholar 

  37. Alper, T. The role of membrane damage in radiation-induced cell death. Adv. Exp. Med. Biol. 84, 139–165 (1977).

    Article  CAS  Google Scholar 

  38. Bennett, C.B. & Rainbow, A.J. DNA damage and biological expression of adenovirus: a comparison of liquid versus frozen conditions of exposure to γ rays. Radiat. Res. 120, 102–112 (1989).

    Article  CAS  Google Scholar 

  39. Thomas, J.H., Neff, N.F. & Botstein, D. Isolation and characterization of mutations in the β-tubulin gene of Saccharomyces cerevisiae. Genetics 111, 715–734 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Galy, V. et al. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108–112 (2000).

    Article  CAS  Google Scholar 

  41. Kerscher, O., Hieter, P., Winey, M. & Basrai, M.A. Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157, 1543–1553 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Foiani, M. et al. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 451, 187–196 (2000).

    Article  CAS  Google Scholar 

  43. Lee, S.E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  Google Scholar 

  44. Kuzminov, A. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc. Natl Acad. Sci. USA 98, 8461–8468 (2001).

    Article  CAS  Google Scholar 

  45. Desany, B.A., Alcasabas, A.A., Bachant, J.B. & Elledge, S.J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  Google Scholar 

  46. Altschul, S.F., Boguski, M.S., Gish, W. & Wootton, J.C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).

    Article  CAS  Google Scholar 

  47. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  48. Hata, H. et al. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148, 571–579 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakao, K. et al. Fusion of the nucleoporin gene, NUP98, and the putative RNA helicase gene, DDX10, by inversion 11 (p15q22) chromosome translocation in a patient with etoposide-related myelodysplastic syndrome. Intern. Med. 39, 412–415 (2000).

    Article  CAS  Google Scholar 

  50. Jelinsky, S.A. & Samson, L.D. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA 96, 1486–1491 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Marks, K. Bloom, D. Gordenin, Y. Pavlov and T. Darden for critical comments and suggestions on the manuscript. The efforts of the consortium responsible for the yeast gene deletion project is greatly appreciated. We thank J. Haber for plasmid pJH132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Resnick.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, C., Lewis, L., Karthikeyan, G. et al. Genes required for ionizing radiation resistance in yeast. Nat Genet 29, 426–434 (2001). https://doi.org/10.1038/ng778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing