Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating

Abstract

Stress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (KATP) channels that adjust membrane potential–dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac KATP channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A. Mutant SUR2A proteins showed aberrant redistribution of conformations in the intrinsic ATP hydrolytic cycle, translating into abnormal KATP channel phenotypes with compromised metabolic signal decoding. Defective catalysis-mediated pore regulation is thus a mechanism for channel dysfunction and susceptibility to dilated cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KATP channel mutations in dilated cardiomyopathy.
Figure 2: SUR2A mutant proteins, coexpressed with Kir6.2, alter KATP channel function.
Figure 3: SUR2A NBD2 mutants have normal ATP binding but altered ATPase properties.
Figure 4: Altered kinetics of the ATPase cycle lead to disrupted metabolic decoding by KATP channels.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Inagaki, N. et al. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166– 1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Inagaki, N. et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16, 1011– 1017 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Bienengraeber, M. et al. ATPase activity of the sulfonylurea receptor: A catalytic function for the KATP channel complex. FASEB J. 14, 1943– 1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuo, M., Tanabe, K., Kioka, N., Amachi, T. & Ueda, K. Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. J. Biol. Chem. 275, 28757– 28763 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Zingman, L.V. et al. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 31, 233– 245 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tucker, S.J., Gribble, F., Zhao, C., Trapp, S. & Ashcroft, F.M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179– 183 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Zingman, L.V. et al. Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels. J. Biol. Chem. 277, 14206– 14210 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Weiss, J.N. & Lamp, S.T. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238, 67– 69 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. O'Rourke, B., Ramza, B. & Marban, E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265, 962– 966 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Nichols, C.G. et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 1785– 1787 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Yamada, K. et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292, 1543– 1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zingman, L.V. et al. Kir6.2 is required for adaptation to stress. Proc. Natl. Acad. Sci. USA 99, 13278– 13283 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hodgson, D.M. et al. Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO J. 22, 1532– 1542 (2003).

    Article  Google Scholar 

  14. Schmitt, J.P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410– 1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Chien, K.R., Ross, J. & Hoshijima, M. Calcium and heart failure. Nat. Med. 9, 508– 509 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Chien, K.R. Stress pathways and heart failure. Cell 98, 555– 558 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Seidman, J.G. & Seidman, C. The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell 104, 557– 567 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Towbin, J.A. & Bowles, N.E. The failing heart. Nature 415, 227– 233 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sharma, N. et al. The C terminus of SUR1 is required for trafficking of KATP channels. J. Biol. Chem. 274, 20628– 20632 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Cartier, E.A., Conti, L.R., Vandenberg, C.A. & Shyng, S.L. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc. Natl. Acad. Sci. USA 98, 2882– 2887 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Walker, J.E., Saraste, M., Runswick, M. & Gay, N. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945– 951 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Matsushita, K. et al. Intramolecular interaction of SUR2 subtypes for intracellular ADP-induced differential control of KATP channels. Circ. Res. 90, 554– 561 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Abraham, M.R. et al. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J. Biol. Chem. 277, 24427– 24434 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Noma, A. ATP-regulated K+ channels in cardiac muscle. Nature 305, 147– 148 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Nestorowicz, A. et al. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46, 1743– 1748 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Olson, T.M. et al. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750– 752 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Gaudet, R. & Wiley, D.C. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J. 20, 4964– 4972 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Pang, Y.P. Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 45, 183– 189 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Schwappach, B., Zerangue, N., Jan, Y.N. & Jan, L.Y. Molecular basis for KATP assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26, 155– 167 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bryan, Y. Kurachi and S. Seino for KATP channel clones; B. Schwappach for constructs used in trafficking studies; and T.P. Burghardt and A.J. Caride for technical advice. This work was supported by the US National Institutes of Health, American Heart Association, Miami Heart Research Institute, Marriott Foundation, Siragusa Foundation, University of Minnesota Supercomputing Institute, Mayo-Dubai Healthcare City Research Project and Mayo Foundation. A.T. is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Terzic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienengraeber, M., Olson, T., Selivanov, V. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 36, 382–387 (2004). https://doi.org/10.1038/ng1329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1329

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing