Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1

Abstract

Chondrodysplasia Grebe type (CGT) is an autosomal recessive disorder characterized by severe limb shortening and dysmorphogenesis. We have identified a causative point mutation in the gene encoding the bone morphogenetic protein (BMP)–like molecule, cartilage-derived morphogenetic protein–1 (CDMP-1). The mutation substitutes a tyrosine for the first of seven highly conserved cysteine residues in the mature active domain of the protein. We demonstrate that the mutation results in a protein that is not secreted and is inactive in vitro. It produces a dominant negative effect by preventing the secretion of other, related BMP family members. We present evidence that this may occur through the formation of heterodimers. The mutation and its proposed mechanism of action provide the first human genetic indication that composite expression patterns of different BMPs dictate limb and digit morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hall, B.K. Embryonic bone formation with special reference to epithelial-mesenchymal interactions and growth factors, in Bone; A Treatise, vol. 8, Mechanisms of Bone Development and Growth (ed. Hall, B.K.) 137–192 (CRC Press, Boca Raton, Florida, 1994).

    Google Scholar 

  2. Wozney, J.M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  Google Scholar 

  3. Luyten, P.P. et al. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J. Biol. Chem. 264, 13377–13380 (1989).

    CAS  PubMed  Google Scholar 

  4. Sampath, T.K. et al. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor β super-family. J. Biol. Chem. 265, 13198–13205 (1990).

    CAS  PubMed  Google Scholar 

  5. Hogan, B.L.M. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).

    Article  CAS  Google Scholar 

  6. Chang, S.C. et al. Cartilage-derived morphogenetic proteins: new members of the transforming growth factor–β superfamily predominantly expressed in long bones during human embryonic development. J. Biol. Chem. 269, 28227–28234 (1994).

    CAS  PubMed  Google Scholar 

  7. Storm, E.E. et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily. Nature 368, 639–643 (1994).

    Article  CAS  Google Scholar 

  8. Storm, E.E. & Kingsley, D.M. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122, 3969–3979 (1996).

    CAS  PubMed  Google Scholar 

  9. Thomas, J.T. et al. A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nature Genet. 12, 315–317 (1996).

    Article  CAS  Google Scholar 

  10. Grebe, H., Achondrogenesis: ein Einfach rezessives Erbmerkmal. Folia Hered. Pathol. 2, 23–29 (1952).

    Google Scholar 

  11. Quelce-Salgado, A. A new type of dwarfism with various bone aplasias and hypoplasias of the extremities.Acta Genet. 14, 63–66 (1964).

    CAS  PubMed  Google Scholar 

  12. Lin, K., Thomas, J.T., McBride, O.W. & Luyten, F.P. Assignment of a new TGF-β superfamily member, human cartilage-derived morphogenetic protein–1, to chromosome 20q11.2. Genomics 34, 150–151 (1996).

    Article  CAS  Google Scholar 

  13. Daopin, S., Piez, K., Ogawa, Y. & Davies, D.R. Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science 257, 369–373 (1992).

    Article  CAS  Google Scholar 

  14. Venkataraman, G., Sasisekharan, V., Cooney, C.L., Langer, R. & Sasisekharan, R. Complex flexability of the transforming growth factor β superfamily. Proc. Natl. Acad. Sci. USA 92, 5406–5410 (1995).

    Article  CAS  Google Scholar 

  15. Griffith, D.L., Keck, P.C., Sampath, T.K., Rueger, D.C. & Carlson, W.D. Three-dimensional structure of recombinant human osteogenic protein-1: structural paradigm for the transforming growth factor β superfamily. Proc. Natl. Acad. Sci. USA 93, 878–883 (1996).

    Article  CAS  Google Scholar 

  16. Kopito, R.R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).

    Article  CAS  Google Scholar 

  17. Lopez, A.R., Cook, J., Deininger, P.L. & Derynck, R. Dominant negative mutants of transforming growth factor–beta 1 inhibit the secretion of different transforming growth factor–beta isoforms. Mol. Cell. Biol. 12, 1674–1679 (1992).

    Article  CAS  Google Scholar 

  18. Hawley, S.H.B. et al. Disruption of BMP signals in embryonic xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

    Article  CAS  Google Scholar 

  19. Aono, A. et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun. 210, 670–677 (1995).

    Article  CAS  Google Scholar 

  20. Israel, D.I. et al. Heterodimeric bone morphogenetic proteins show enhanced activty in vitro and in vivo. Growth Factors 13, 291–300 (1996).

    Article  CAS  Google Scholar 

  21. Jones, C.M., Lyons, K.M. & Hogan, B.L.M. Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111, 531–542 (1991).

    CAS  Google Scholar 

  22. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    Article  CAS  Google Scholar 

  23. Lyons, K.M., Hogan, B.L.M. & Robertson, E.J. Colocalization of BMP-7 and BMP-2 rnRNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–78 (1995).

    Article  CAS  Google Scholar 

  24. Kingsley, D.M. What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet. 10, 16–21 (1994).

    Article  CAS  Google Scholar 

  25. Dudley, A.T. & Robertson, E.J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP-7 deficient embryos. Dev. Dynamics 208, 349–362 (1997).

    Article  CAS  Google Scholar 

  26. Saunders, J.W. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–404 (1948).

    Article  Google Scholar 

  27. Gray, D.J., Gardner, E., & O'Rahifly, R. The prenatal development of the skeleton and joints of the human hand. Am. J. Anat. 101, 169–223 (1957).

    Article  CAS  Google Scholar 

  28. Bell, J. On brachydactyly and syrnphalangism. Treat. Hum. Inherit. 5, 1–30 (1951).

    Google Scholar 

  29. Fitch, N. Classification and identification of inherited brachydactylies. J. Med. Genet. 16, 36–44 (1978).

    Article  Google Scholar 

  30. Mastrobattista, J.M., Dolle, P., Blanton, S.H. & Northrup, H. Evaluation of candidate genes for familial brachydactyly. J. Med. Genet. 32, 851–854 (1995).

    Article  CAS  Google Scholar 

  31. Kumar, D., Curtis, D. & Blank, C.E. Grebe chondrodysplasia and brachydactyly in a family. Clin. Genet. 25, 68–72 (1984).

    Article  CAS  Google Scholar 

  32. Feng, B., Chen, R., Luo, J., Chen, R. & Zheng, Y. A kindred of Miao nationality affected with Grebe–Quelce-Salgado achondrogenesis. Acta Genet. Sin. 12, 378–386 (1985).

    Google Scholar 

  33. Garcia-Castro, J.M. & Perez-Comas, A. Non-lthal achondrogenesis (Grebe–Quelce-Salgado type) in two Puerto Rican sibships. J. Pediatr. 87, 948–952 (1975).

    Article  Google Scholar 

  34. Zimmerman, L.B., De Jesus-Escobar, J.M. & Harland, R.M., Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  35. Atsumi, T., Miwa, Y., Kimata, K. & Ikawa, Y. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ. Dev. 30, 109–116 (1990).

    Article  CAS  Google Scholar 

  36. Vukicevic, S., Helder, M.N. & Luyten, F.P. Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J. Histochem. Cytochem. 42, 869–875 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Terrig Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J., Kilpatrick, M., Lin, K. et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17, 58–64 (1997). https://doi.org/10.1038/ng0997-58

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-58

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing