Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protein linkage map of Escherichia coli bacteriophage T7

Abstract

Genome sequencing projects are predicting large numbers of novel proteins, whose interactions with other proteins must mediate the function of cellular processes. To analyse these networks, we used the yeast two-hybrid system on a genome-wide scale to identify 25 interactions among the proteins of Escherichia coli bacteriophage T7. Among these is a set of six interactions connecting proteins that function in DMA replication and DMA packaging. Remarkably, two genes, arranged such that one entirely overlaps the other and uses a different reading frame, encode interacting proteins. Several of the interactions reflect intramolecular associations of different domains of the same polypeptide, suggesting that the two-hybrid assay may be useful in the analysis of protein folding. This global approach to protein–protein interactions may be applicable to the analysis of more complex genomes whose sequences are becoming available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fields, S. & Song, O.-K. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  2. Chien, C.-T., Bartel, P.L., Sternglanz, R. & Fields, S. The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582 (1991).

    Article  CAS  Google Scholar 

  3. Dunn, J.J. & Studier, F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. molec. Biol. 166, 477–535 (1983).

    Article  CAS  Google Scholar 

  4. Bendixen, C., Gangloff, S. & Rothstein, R. A yeast mating-selection scheme for detection of protein-protein interactions. Nucl. Acids Res. 22, 1778–1779 (1994).

    Article  CAS  Google Scholar 

  5. Ma, J. & Ptashne, M. A new class of yeast transcriptional activators. Cell 51, 113–119 (1987).

    Article  CAS  Google Scholar 

  6. Breeden, L. & Nasmyth, K. Regulation of the yeast HO gene. Cold Spring Harb. Symp. quant. Biol. 50, 643–650 (1985).

    Article  CAS  Google Scholar 

  7. Bartel, P., Chien, C.-T., Sternglanz, R. & Fields, S. Elimination of false positives that arise in using the two-hybrid system. BioTechniques 14, 920–924 (1993).

    CAS  PubMed  Google Scholar 

  8. Kirn, Y.T., Tabor, S., Bortner, C., Griffith, J.D. & Richardson, C.C. J. Biol. Chem. 267, 15022–15031 (1992).

    Google Scholar 

  9. Patel, S.S. & Hingorani, M.M. Oligomeric structure of bacteriophage T7 DNA primase/helicase proteins. J. Biol. Chem. 268, 10668–10675 (1993).

    CAS  PubMed  Google Scholar 

  10. Nakai, H. & Richardson, C.C. Leading and lagging strand synthesis at the replication fork of bacteriophage T7: distinct properties of T7 gene 4 protein as a helicase and primase. J. Biol. Chem. 263, 9818–9830 (1988).

    CAS  PubMed  Google Scholar 

  11. Patel, S.S., Rosenberg, A.H., Studier, F.W. & Johnson, K.A. Large scale purification and biochemical characterization of T7 primase/helicase proteins: evidence for homodimer and heterodimer formation. J. Biol. Chem. 267, 15013–15021 (1992).

    CAS  PubMed  Google Scholar 

  12. Nakai, H. & Richardson, C.C. Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7: protein-protein and protein-DNA interactions involved in RNA-primed DNA synthesis. J. Biol. Chem. 261, 15208–15216 (1986).

    CAS  PubMed  Google Scholar 

  13. Steven, A. & Tins, B. The structure of bacteriophage T7. In Electron Microscopy of Proteins (eds. Harris, J. & Home, R.) 1–36 (Academic Press, London, 1986).

    Google Scholar 

  14. Roeder, G. & RD.Bacteriophage T7 morphogenesis: Phage-related particles in cells infected with wild-type and mutant T7 phage. Virology. 76, 263–285 (1977).

    Article  CAS  Google Scholar 

  15. Matsuo-Kato, H., Fujisawa, H. & Minagawa, T. Structure and assembly of bacteriophage T3 tails. Virology. 109, 157–164 (1981).

    Article  CAS  Google Scholar 

  16. Mooney, P.O., North, R. & Molineux, I.J. The role of T7 gene 2 protein in DNA replication. Nucl. Acids Res. 8, 3043–3053 (1980).

    Article  CAS  Google Scholar 

  17. Studier, F.W. Identification and mapping of five new genes in bacteriophage T7. J. Molec. Biol. 153, 493–502 (1981).

    Article  CAS  Google Scholar 

  18. Spoerel, N., Herrlich, P. & Bickle, T.A. A novel bacteriophage defence mechanism: the anti-restriction protein. Nature 278, 30–34 (1979).

    Article  CAS  Google Scholar 

  19. Rahmsdorf, H.J. et al. Protein kinase induction in E. coli by bacteriophage T7. Proc. Natl. Acad. Sci. USA 71, 586–589 (1974).

    Article  CAS  Google Scholar 

  20. Casjens, S., Eppler, K., Parr, R. & Poteete, A.R. Nucleotide sequence of the bacteriophage P22 gene 79 to 3 region: identification of a new gene required for lysis. Virology 171, 588–698 (1989).

    Article  CAS  Google Scholar 

  21. Sousa, R., Chung, Y.J., Rose, J.R. & Wang, B.-C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364, 593–599 (1993).

    Article  CAS  Google Scholar 

  22. Fields, S. & Sternglanz, R. The two-hybrid system: An assay for protein–protein interactions. Trends Genet. 10, 286–292 (1994).

    Article  CAS  Google Scholar 

  23. Kirn, Y.T., Tabor, S., Churchich, J.E. & Richardson, C.C. Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7. J. Biol. Chem. 267, 15032–15040 (1992).

    Google Scholar 

  24. Moffatt, B.A. & Studier, F.W. T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49, 221–227 (1987).

    Article  CAS  Google Scholar 

  25. Huang, Z.J., Curtin, K.D. & Rosbash, M. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267, 1169–1172 (1995).

    Article  CAS  Google Scholar 

  26. Printen, J.A. & Sprague, G.F., Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138, 609–619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Finley, R.L.J. & Brent, R. Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA 91, 12980–12984 (1994).

    Article  CAS  Google Scholar 

  28. Gietz, R.D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

  29. Bartel, P.L., Chien, C.-T,, Sternglanz, R. & Fields, S. Using the two-hybrid system to detect protein-protein interactions. In Cellular Interactions in Development: A Practical Approach (ed. Hartley, DA) 153–179 (Oxford University Press, Oxford,1993).

    Google Scholar 

  30. Schiestl, R.H., Manivasakam, P., Woods, R.A. & Gietz, R.D. Introducing DNA into yeast by transformation. Methods 5, 79–85 (1993).

    Article  CAS  Google Scholar 

  31. Sherman, F., Fink, G.R. & Hicks, J.B. Methods in yeast genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986).

  32. Hoffman, C.S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene 57, 267–272 (1987).

    Article  CAS  Google Scholar 

  33. Hall, M.N., Hereford, L. & Herskowitz, I. Targeting of E coli β-galactosidase to the nucleus in yeast. Cell 36, 1057–1065 (1984).

    Article  CAS  Google Scholar 

  34. Altschul, S.F., Gisch, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–10 (1990).

    Article  CAS  Google Scholar 

  35. Lancy, E.D., Lifsics, M.R., Munson, P. & Maurer, R. Nucleotide sequences of dnaE, the gene for the polymerase subuntt of DNA polymerase III in Salmonella typhimurium, and a variant that facilitates growth in the absence of another polymerase subunrt. J. Bacteriol. 171, 5581–5586 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartel, P., Roecklein, J., SenGupta, D. et al. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet 12, 72–77 (1996). https://doi.org/10.1038/ng0196-72

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing