Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism

Abstract

Vitamin B12 (cobalamin) is essential in animals for metabolism of branched chain amino acids and odd chain fatty acids, and for remethylation of homocysteine to methionine1. In the cblF inborn error of vitamin B12 metabolism, free vitamin accumulates in lysosomes, thus hindering its conversion to cofactors2,3. Using homozygosity mapping in 12 unrelated cblF individuals and microcell-mediated chromosome transfer, we identified a candidate gene on chromosome 6q13, LMBRD1, encoding LMBD1, a lysosomal membrane protein with homology to lipocalin membrane receptor LIMR. We identified five different frameshift mutations in LMBRD1 resulting in loss of LMBD1 function, with 18 of the 24 disease chromosomes carrying the same mutation embedded in a common 1.34-Mb haplotype. Transfection of fibroblasts of individuals with cblF with wild-type LMBD1 rescued cobalamin coenzyme synthesis and function. This work identifies LMBRD1 as the gene underlying the cblF defect of cobalamin metabolism and suggests that LMBD1 is a lysosomal membrane exporter for cobalamin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of a locus for cblF on chromosome 6q13.
Figure 2: Colocalization of LMBD1 with the lysosomal membrane marker LAMP1.
Figure 3: Multiple sequence alignment and structure prediction of LMBD1.
Figure 4: Complementation of the cblF defect by transfection with the wild-type human LMBD1 construct.

Similar content being viewed by others

References

  1. Chanarin, I., Deacon, R., Lumb, M., Muir, M. & Perry, J. Coblamin-folate interrelations: a critical review. Blood 66, 479–489 (1985).

    CAS  PubMed  Google Scholar 

  2. Rosenblatt, D.S., Hosack, A., Matiaszuk, N.V., Cooper, B.A. & Laframboise, R. Defect in vitamin B12 release from lysosomes: newly described inborn error of vitamin B12 metabolism. Science 228, 1319–1321 (1985).

    Article  CAS  Google Scholar 

  3. Vassiliadis, A., Rosenblatt, D.S., Cooper, B.A. & Bergeron, J.J. Lysosomal cobalamin accumulation in fibroblasts from a patient with an inborn error of cobalamin metabolism (cblF complementation group): visualization by electron microscope radioautography. Exp. Cell Res. 195, 295–302 (1991).

    Article  CAS  Google Scholar 

  4. Coelho, D. et al. Gene identification for the cblD defect of vitamin B12 metabolism. N. Engl. J. Med. 358, 1454–1464 (2008).

    Article  CAS  Google Scholar 

  5. Suormala, T. et al. The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J. Biol. Chem. 279, 42742–42749 (2004).

    Article  CAS  Google Scholar 

  6. Morral, N. et al. The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat. Genet. 7, 169–175 (1994).

    Article  CAS  Google Scholar 

  7. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  Google Scholar 

  8. Budde, B.S. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat. Genet. 40, 1113–1118 (2008).

    Article  CAS  Google Scholar 

  9. Abecasis, G.R. & Wigginton, J.E. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am. J. Hum. Genet. 77, 754–767 (2005).

    Article  CAS  Google Scholar 

  10. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article  CAS  Google Scholar 

  11. Crisponi, L. et al. Crisponi syndrome is caused by mutations in the CRLF1 gene and is allelic to cold-induced sweating syndrome type 1. Am. J. Hum. Genet. 80, 971–981 (2007).

    Article  CAS  Google Scholar 

  12. Cuthbert, A.P. et al. Construction and characterization of a highly stable human: rodent monochromosomal hybrid panel for genetic complementation and genome mapping studies. Cytogenet. Cell Genet. 71, 68–76 (1995).

    Article  CAS  Google Scholar 

  13. Watkins, D., Matiaszuk, N. & Rosenblatt, D.S. Complementation studies in the cblA class of inborn error of cobalamin metabolism: evidence for interallelic complementation and for a new complementation class (cblH). J. Med. Genet. 37, 510–513 (2000).

    Article  CAS  Google Scholar 

  14. Wang, Y.H. et al. Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. J. Virol. 79, 8113–8120 (2005).

    Article  CAS  Google Scholar 

  15. Clark, R.M., Marker, P.C. & Kingsley, D.M. A novel candidate gene for mouse and human preaxial polydactyly with altered expression in limbs of Hemimelic extra-toes mutant mice. Genomics 67, 19–27 (2000).

    Article  CAS  Google Scholar 

  16. Wojnar, P., Lechner, M., Merschak, P. & Redl, B. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J. Biol. Chem. 276, 20206–20212 (2001).

    Article  CAS  Google Scholar 

  17. Lettice, L.A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl. Acad. Sci. USA 99, 7548–7553 (2002).

    Article  CAS  Google Scholar 

  18. Flower, D.R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 (1996).

    Article  CAS  Google Scholar 

  19. Fluckinger, M., Merschak, P., Hermann, M., Haertle, T. & Redl, B. Lipocalin-interacting-membrane-receptor (LIMR) mediates cellular internalization of β-lactoglobulin. Biochim. Biophys. Acta 1778, 342–347 (2008).

    Article  CAS  Google Scholar 

  20. Wojnar, P., Lechner, M. & Redl, B. Antisense down-regulation of lipocalin-interacting membrane receptor expression inhibits cellular internalization of lipocalin-1 in human NT2 cells. J. Biol. Chem. 278, 16209–16215 (2003).

    Article  CAS  Google Scholar 

  21. Dufour, E., Marden, M.C. & Haertle, T. β-lactoglobulin binds retinol and protoporphyrin IX at two different binding sites. FEBS Lett. 277, 223–226 (1990).

    Article  CAS  Google Scholar 

  22. Schuh, S. et al. Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy. An inborn error of metabolism due to a defect in cobalamin metabolism. N. Engl. J. Med. 310, 686–690 (1984).

    Article  CAS  Google Scholar 

  23. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. GRR: graphical representation of relationship errors. Bioinformatics 17, 742–743 (2001).

    Article  CAS  Google Scholar 

  24. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  25. Thiele, H. & Nürnberg, P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21, 1730–1732 (2005).

    Article  CAS  Google Scholar 

  26. Rüschendorf, F. & Nürnberg, P. ALOHOMORA: a tool for linkage analysis using 10K SNP array data. Bioinformatics 21, 2123–2125 (2005).

    Article  Google Scholar 

  27. Litzkas, P., Jha, K.K. & Ozer, H.L. Efficient transfer of cloned DNA into human diploid cells: protoplast fusion in suspension. Mol. Cell. Biol. 4, 2549–2552 (1984).

    Article  CAS  Google Scholar 

  28. Tokuyasu, K.T. Immunocytochemistry on ultrathin frozen section. Histochem. J. 12, 381–403 (1980).

    Article  CAS  Google Scholar 

  29. Robenek, H. & Severs, N.J. Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique. Biol. Proced. Online 10, 9–19 (2008).

    Article  CAS  Google Scholar 

  30. Robenek, H., Buers, I., Hofnagel, O., Lorkowski, S. & Severs, N.J. GFP-tagged proteins visualized by freeze-fracture immuno-electron microscopy: a new tool in cellular and molecular medicine. J. Cell. Mol. Med. advance online publication, doi:10.1111/j.1582–4934.2008.00407.x (27 June 2008).

Download references

Acknowledgements

We thank the following individuals who provided subject samples and/or clinical information: D. Applegarth, J. Bever, S. Cederbaum, G. Davidson, B.S. Dowton, G. Hoganson, R. Laframboise, U. Lichter, M. Lindner, M. Seashore, V. Shih, G.P.A. Smit, J. Vockley and H.E. Wiltse. We thank E. Kirst, C. Kluck and U. Botschen for expert technical assistance. F.R. and S.G. were supported by the fund “Innovative Medical Research” of University of Münster Medical School. B.G. and C.S. were supported by the Centre National de la Recherche Scientifique, the Institut national de la santé et de la recherche médicale and the Agence Nationale de la Recherche - Programme Pluriannuel de Recherche sur les Maladies Rares. I.R.M. was supported by a studentship from the Fonds de la Recherche en Santé du Québec. D.S.R. and I.R.M. were supported by funds from the Canadian Institutes of Health Research and the Hess B. and Diane Finestone Laboratory in memory of Jacob and Jenny Finestone. Financial support was further given by the Swiss National Foundation and the German Federal Ministry of Education and Research through the National Genome Research Network.

Author information

Authors and Affiliations

Authors

Contributions

F.R. and P.N. designed the study, analyzed the data and wrote the manuscript. S.G. designed primers, collected data, performed sequencing analysis, LMBD1 expression analysis and biochemical rescue experiments. I.R.M. collected subject information and performed microcell-mediated chromosome transfer. T.S. performed biochemical rescue experiments with the wild-type construct. C.S., I.B., A.S., H.R. and B.G. analyzed the subcellular localization of the tagged construct. M.R.T. performed pyrosequencing of the control chromosomes. G.N. performed the bioinformatic analysis and analyzed the haplotype data. T.W. performed sequencing analysis and edited the manuscript. M.S. and M.B. cloned the construct. C.B. performed the genome scan. T.M., B.G., D.S.R. and B.F. were involved in study design. W.H. and B.G. analyzed the structure and homology of LMBD1. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Frank Rutsch.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods and Supplementary Tables 1–3 (PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutsch, F., Gailus, S., Miousse, I. et al. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41, 234–239 (2009). https://doi.org/10.1038/ng.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing