Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nature and functions of autoantibodies

Abstract

Antibodies that react with self-molecules occur in healthy individuals and are referred to as natural antibodies or autoantibodies. Natural autoantibodies are mainly IgM, are encoded by unmutated V(D)J genes and display a moderate affinity for self-antigens. They provide a first line of defense against infections, probably serve housekeeping functions and contribute to the homeostasis of the immune system. By contrast, high-affinity, somatically mutated IgG autoantibodies reflect a pathologic process whereby homeostatic pathways related to cell clearance, antigen-receptor signaling or cell effector functions are disturbed. In some autoimmune disorders, autoantibodies might be present before disease onset, show remarkable specificity and serve as biomarkers providing an opportunity for diagnosis and therapeutic intervention. In organ-specific autoimmune diseases, such as myasthenia gravis or pemphigus, autoantibodies directly bind to and injure target organs. In systemic autoimmune diseases, autoantibodies react with free molecules, such as phospholipids, as well as cell surface and nucleoprotein antigens, forming pathogenic antigen–antibody (immune) complexes. These autoantibodies injure tissues and organs through engagement of FcγR activation of complement as well as internalization and activation of Toll-like receptors. Activation of intracellular Toll-like receptors in plasmacytoid dendritic cells leads to the production of type I interferon, whereas engagement of intracellular Toll-like receptors on antigen-presenting cells stimulates cell activation and the production of other inflammatory cytokines. Thus, immune complexes might perpetuate a positive feedback loop amplifying inflammatory responses.

Key Points

  • Natural antibodies or autoantibodies, particularly IgM, that react with self-molecules occur in normal individuals and display a moderate affinity but high avidity for self-antigens

  • High-affinity, somatically mutated, class-switched IgG autoantibodies reflect a pathologic process in which homeostatic pathways related to cell clearance, antigen-receptor signaling or cell effector functions are disturbed

  • The mechanisms involved in immune-complex-mediated tissue injury include engagement of FcγRs and activation of complement, as well as internalization and activation of Toll-like receptors

  • Autoantibodies might be detectable long before disease onset and serve as biomarkers enabling diagnosis and targeting of therapeutic intervention

  • In organ-specific autoimmune diseases, autoantibodies directly injure target organs; in systemic autoimmune diseases, they can also bind to different self-molecules and cause disease through the formation of immune complexes

  • Research is needed to clarify why certain antigens are targeted in different autoimmune diseases and how some antibodies activate, whereas others inhibit, immune responses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenic autoantibodies cause inflammation and tissue injury.

Similar content being viewed by others

References

  1. Casali P and Schettino EW (1996) Structure and function of natural antibodies. Curr Top Microbiol Immunol 210: 167–179

    CAS  PubMed  Google Scholar 

  2. Carroll MC (1998) The lupus paradox. Nat Genet 19: 3–59

    Article  CAS  Google Scholar 

  3. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16: 545–568

    Article  CAS  Google Scholar 

  4. Zhou ZH et al. (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1: 51–61

    Article  CAS  Google Scholar 

  5. Baxendale HE et al. (2008) Natural human antibodies to pneumococcus have distinctive molecular characteristics and protect against pneumococcal disease. Clin Exp Immunol 151: 51–60

    Article  CAS  Google Scholar 

  6. Yurasov S and Nussenzweig MC (2007) Regulation of autoreactive antibodies. Curr Opin Rheumatol 19: 421–426

    Article  CAS  Google Scholar 

  7. Harindranath N et al. (1993) Structure of the VH and VL segments of polyreactive and monoreactive human natural antibodies to HIV-1 and Escherichia coli β-galactosidase. Int Immunol 5: 1523–1533

    Article  CAS  Google Scholar 

  8. Phillips-Quagliata JM et al. (2001) IgG2a and IgA co-expression by the natural autoantibody-producing murine B lymphoma T560. Autoimmunity 33: 181–197

    Article  CAS  Google Scholar 

  9. Casali P et al. (1987) Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ (CD5+) B-cell subset. Science 236: 77–81

    Article  CAS  Google Scholar 

  10. Casali P and Notkins AL (1989) CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 10: 364–368

    Article  CAS  Google Scholar 

  11. Casali P and Notkins AL (1989) Probing the human B-cell repertoire with EBV: polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol 7: 513–535

    Article  CAS  Google Scholar 

  12. Duan B and Morel L (2006) Role of B-1a cells in autoimmunity. Autoimmun Rev 5: 403–408

    Article  CAS  Google Scholar 

  13. Mohan C et al. (1998) Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis Rheum 41: 1652–1662

    Article  CAS  Google Scholar 

  14. Casali P (1990) Polyclonal B cell activation and antigen-driven antibody response as mechanisms of autoantibody production in systemic lupus erythematosus. Autoimmunity 5: 147–150

    Article  CAS  Google Scholar 

  15. Kasaian MT and Casali P (1993) Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity 15: 315–329

    Article  CAS  Google Scholar 

  16. Kasaian MT and Casali P (1995) B-1 cellular origin and VH segment structure of IgG, IgA, and IgM anti-DNA autoantibodies in patients with systemic lupus erythematosus. Ann NY Acad Sci 764: 410–423

    Article  CAS  Google Scholar 

  17. Chai SK et al. (1994) Natural autoantibodies. Adv Exp Med Biol 347: 147–159

    Article  CAS  Google Scholar 

  18. Schettino EW et al. (1996) Structure-function relation in natural and disease-associated human autoantibodies. In The Antibodies, (Vol 2) 155–203 (Eds Zanetti M and Capra JD) Amsterdam: Harwood Academic Publishers

    Google Scholar 

  19. Schettino EW et al. (1997) VHDJH gene sequences and antigen reactivity of monoclonal antibodies produced by human B-1 cells: evidence for somatic selection. J Immunol 158: 2477–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carroll MC and Prodeus AP (1998) Linkages of innate and adaptive immunity. Curr Opin Immunol 10: 36–40

    Article  CAS  Google Scholar 

  21. Carroll MC and Holers VM (2005) Innate autoimmunity. Adv Immunol 86: 137–157

    Article  CAS  Google Scholar 

  22. Fleming SD (2006) Natural antibodies, autoantibodies and complement activation in tissue injury. Autoimmunity 39: 379–386

    Article  CAS  Google Scholar 

  23. Zhang M and Carroll MC (2007) Natural antibody mediated innate autoimmune response. Mol Immunol 44: 103–110

    Article  CAS  Google Scholar 

  24. Harindranath N et al. (1991) Complete sequence of the genes encoding the VH and VL regions of low- and high-affinity monoclonal IgM and IgA1 rheumatoid factors produced by CD5+ B cells from a rheumatoid arthritis patient. Int Immunol 3: 865–875

    Article  CAS  Google Scholar 

  25. Mantovani L et al. (1993) Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol 151: 473–488

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kasaian MT et al. (1994) Structure of the VH and VL segments of monoreactive and polyreactive IgA autoantibodies to DNA in patients with systemic lupus erythematosus. J Immunol 152: 3137–3151

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ichiyoshi Y and Casali P (1995) Analysis of the structural correlates for self-antigen binding by natural and disease-related autoantibodies. In vitro expression of recombinant and/or mutagenized human IgG. Ann NY Acad Sci 764: 328–341

    Article  CAS  Google Scholar 

  28. Ichiyoshi Y et al. (1995) A human anti-insulin IgG autoantibody apparently arises through clonal selection from an insulin specific “germ-line” natural antibody template. J Immunol 154: 226–238

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z et al. (2000) Structure-function analysis of a lupus anti-DNA autoantibody: central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA. Eur J Immunol 30: 2015–2226

    Article  CAS  Google Scholar 

  30. Duquerroy S et al. (2007) Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. J Mol Biol 368: 1321–1331

    Article  CAS  Google Scholar 

  31. Arnold LW et al. (1994) Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J Exp Med 179: 1585–1595

    Article  CAS  Google Scholar 

  32. Ikematsu H et al. (1994) VH and Vκ segment structure of anti-insulin IgG autoantibodies in patients with insulin-dependent diabetes mellitus. Evidence for somatic selection. J Immunol 152: 1430–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ichiyoshi Y and Casali P (1994) Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain variable gene segments. J Exp Med 180: 885–895

    Article  CAS  Google Scholar 

  34. Ikematsu W et al. (1998) Human anti-cardiolipin IgG monoclonal autoantibodies cause placental thrombosis and fetal loss in BALB/c mice. Arthritis Rheum 41: 1026–1039

    Article  CAS  Google Scholar 

  35. Hardy RR (2006) B-1 B cell development. J Immunol 177: 2749–2754

    Article  CAS  Google Scholar 

  36. Honjo T et al. (2004) AID: how does it aid antibody diversity? Immunity 20: 659–668

    Article  CAS  Google Scholar 

  37. Casali P et al. (2006) DNA repair in antibody somatic hypermutation. Trends Immunol 27: 313–321

    Article  CAS  Google Scholar 

  38. Diaz M and Casali P (2002) Somatic immunoglobulin hypermutation. Curr Opin Immunol 14: 235–240

    Article  CAS  Google Scholar 

  39. Straus SE et al. (1999) An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130: 591–601

    Article  CAS  Google Scholar 

  40. Peng Y et al. (2005) The role of IgM antibodies in the recognition and clearance of apoptotic cells. Mol Immunol 42: 781–787

    Article  CAS  Google Scholar 

  41. Peng Y et al. (2007) Innate and adaptive immune response to apoptotic cells. J Autoimmun 29: 303–309

    Article  CAS  Google Scholar 

  42. Sakaguchi N et al. (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426: 454–460

    Article  CAS  Google Scholar 

  43. Casciola-Rosen L et al. (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 190: 815–826

    Article  CAS  Google Scholar 

  44. Klareskog L et al. (2006) Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 18: 867–875

    Article  Google Scholar 

  45. Theofilopoulos AN et al. (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23: 307–336

    Article  CAS  Google Scholar 

  46. Martin DA and Elkon KB (2005) Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity. J Exp Med 202: 1465–1469

    Article  CAS  Google Scholar 

  47. Baccala R et al. (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13: 543–551

    Article  CAS  Google Scholar 

  48. Wildbaum G et al. (2003) Beneficial autoimmunity to proinflammatory mediators restrains the consequences of self-destructive immunity. Immunity 19: 679–688

    Article  CAS  Google Scholar 

  49. Cochrane CG and Koffler D (1973) Immune complex disease in experimental animals and man. Adv Immunol 16: 185–264

    Article  CAS  Google Scholar 

  50. Koffler D et al. (1967) Immunological studies concerning the nephritis of systemic lupus erythematosus. J Exp Med 126: 607–624

    Article  CAS  Google Scholar 

  51. Girardi G et al. (2006) The complement system in the pathophysiology of pregnancy. Mol Immunol 43: 68–77

    Article  CAS  Google Scholar 

  52. Monach PA et al. (2004) The role of antibodies in mouse models of rheumatoid arthritis, and relevance to human disease. Adv Immunol 82: 217–248

    Article  CAS  Google Scholar 

  53. Clynes R et al. (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279: 1052–1054

    Article  CAS  Google Scholar 

  54. Bolland S and Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13: 277–285

    Article  CAS  Google Scholar 

  55. Nimmerjahn F and Ravetch JV (2005) Divergent immunoglobulin gamma subclass activity through selective Fc receptor binding. Science 310: 1510–1512

    Article  CAS  Google Scholar 

  56. Arbuckle MR et al. (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349: 1526–1533

    Article  CAS  Google Scholar 

  57. Buyon JP and Winchester R (1990) Congenital complete heart block. A human model of passively acquired autoimmune injury. Arthritis Rheum 33: 609–614

    Article  CAS  Google Scholar 

  58. Targoff IN (2000) Update on myositis-specific and myositis-associated autoantibodies. Curr Opin Rheumatol 12: 475–481

    Article  CAS  Google Scholar 

  59. DeGiorgio LA et al. (2001) A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7: 1189–1193

    Article  CAS  Google Scholar 

  60. Zhao ZS et al. (1998) Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279: 1344–1347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Casali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkon, K., Casali, P. Nature and functions of autoantibodies. Nat Rev Rheumatol 4, 491–498 (2008). https://doi.org/10.1038/ncprheum0895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing