Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of CO2 capture and utilization in mitigating climate change

Abstract

To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4–8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the calculation of the mitigation challenge.
Figure 2: Global CO2-EOR capacity compared with regional CO2 sequestration targets.
Figure 3: The effect of blending methanol with gasoline.
Figure 4: CCS versus CCU—a perspective for the period 2010 to 2050.

Similar content being viewed by others

References

  1. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. BP Statistical Review of World Energy June 2015 (BP, 2015).

  3. Energy Technology Perspectives 2014—Harnessing Electricity's Potential (IEA, 2014).

  4. World Energy Investment Outlook 2014 Factsheet (IEA, 2014).

  5. Jaccard, M. Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Clean and Enduring Energy (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  6. Brown, J. A. G., Eickhoff, C. & Hanstock, D. J. Capacity and Balancing Options for the Design of Power Plant in the UK (Institution of Chemical Engineers, 2014); http://go.nature.com/2lTDsAF

    Google Scholar 

  7. Mac Dowell, N. et al. An overview of CO2 capture technologies. Energy Environ. Sci. 3, 1645–1669 (2010).

    Article  CAS  Google Scholar 

  8. Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    Article  CAS  Google Scholar 

  9. IPCC IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B. et al.) (Cambridge Univ. Press, 2005).

  10. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  Google Scholar 

  11. Wallace, M. & Kuuskraa, V. Near-Term Projections of CO2 Utilization for Enhanced Oil Recovery (NETL, 2014).

    Google Scholar 

  12. Godec, M. L. Global Technolgogy Roadmap for CCS in Industry: Sectoral Assessment CO2 Enhanced Oil Recovery (United Nations Industrial Development Organisation, 2011).

    Google Scholar 

  13. Dooley, J. J. et al. Carbon Dioxide Capture and Geologic Storage (Global Energy Technology Strategy Program, 2006).

    Google Scholar 

  14. Blunt, M. Carbon Dioxide Storage. Briefing Paper No. 4 (Grantham Institute for Climate Change, 2010).

    Google Scholar 

  15. CO2 Capture and Storage: A Key Carbon Abatement Option (IEA, 2008).

  16. Gale, J. Geological storage of CO2: what's known, where are the gaps, and what more needs to be done? Greenhouse Gas Control Technol. 1, 201–206 (2003).

    Google Scholar 

  17. Technology Roadmap: Carbon Capture and Storage (IEA, 2013).

  18. The Global Status of CCS: 2015 (Global CCS Institute, 2015).

  19. Driven by China, Global Methanol Demand to Rise Nearly 80 Percent by 2023; North America Marks Return as “Production Powerhouse”. IHS (29 August 2014).

  20. The World Factbook (CIA, accessed 18 August 2014); http://go.nature.com/2mbQZ7T

  21. Key World Energy Statistics (IEA, 2012).

  22. Energy Technology Perspectives 2012—How to Secure a Clean Energy Future (IEA, 2012).

  23. Heuberger, C. et al. Quantifying the value of CCS for the future electricity system. Energy Environ. Sci. 9, 2497–2510 (2016).

    Article  CAS  Google Scholar 

  24. Dai, Z. et al. CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ. Sci. Technol. 50, 7546–7554 (2016).

    Article  CAS  Google Scholar 

  25. Dai, Z. et al. An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ. Sci. Technol. Lett. 1, 49–54 (2014).

    Article  CAS  Google Scholar 

  26. Charles, D. Stimulus gives DOE billions for carbon-capture projects. Science 323, 1158 (2009).

    Article  CAS  Google Scholar 

  27. Vora, S. D. DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update (National Energy Technology Laboratory, 2013).

    Google Scholar 

  28. Optimisation of CO2 Storage in CO2 Enhanced Oil Recovery Projects (Advanced Resources International, 2010).

  29. GHG Equivalencies Calculator—Calculations and References (EPA, 2016).

  30. Lipponen, J. Storing CO2 Through Enhanced Oil Recovery: Combining EOR with CO2 Storage (EOR+) For Profit (IEA, 2015).

    Google Scholar 

  31. Mui, S. et al. GHG Emission Factors for High Carbon Intensity Crude Oils (Natural Resources Defense Council, 2010).

    Google Scholar 

  32. Inoue, S., Koinuma, H. & Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polymer Sci. B Polymer Lett. 7, 287–292 (1969).

    Article  CAS  Google Scholar 

  33. Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 2–32 (2006).

    Article  CAS  Google Scholar 

  34. Song, C. In CO2 Conversion and Utilization (eds Song, C. et al.) 2–30 (ACS, 2002).

    Book  Google Scholar 

  35. Aresta, M., Dibenedettoa, A. & Angeini, A. The changing paradigm in CO2 utilization. J. CO2 Utilization 3–4, 65–73 (2013).

    Article  Google Scholar 

  36. Kolbe, H. & Lautemann, E. Über die Constitution und Basicität der Salicylsäure. Ann. Chem. 113, 125–127 (1869).

    Article  Google Scholar 

  37. Solvay, E. Absorption of ammonia in soda ash production. US patent 263,981 A (1882).

  38. Bosch, C. & Meiser, W. Process of manufacturing urea. US patent 1,429,483 A (1922).

  39. Department, B. World chemical outlook 2017. Chem. Eng. News 91, 11–19 (2013).

    Google Scholar 

  40. Kirchofer, A., Brandt, A., Krevor, S., Prigiobbe, V. & Wilcox, J. Impact of alkalinity sources on the life-cycle efficiency of mineral carbonation technologies. Energy Environ. Sci. 5, 8631–8641 (2012).

    Article  CAS  Google Scholar 

  41. Olah, G. A., Goeppert, A. & Surya Prakash, G. K. Beyond Oil and Gas: The Methanol Economy. (Wiley, 2009).

    Book  Google Scholar 

  42. Van-Dal, E. S. & Bouallou, C. Design and simulation of a methanol production plant from CO2 hydrogenation. J. Cleaner Prod. 57, 38–45 (2013).

    Article  CAS  Google Scholar 

  43. Hall, C., Balogh, S. & Murphy, D. What is the minimum EROI that a sustainable society must have? Energies 2, 25–47 (2009).

    Article  Google Scholar 

  44. Hall, C. A. S., Lambert, J. G. & Balogh, S. B. EROI of different fuels and the implications for society. Energy Policy 64, 141–152 (2014).

    Article  Google Scholar 

  45. Dale, M., Krumdieck, S. & Bodger, P. Global energy modeling: a biophysical approach (GEMBA) part 1: an overview of biophysical economics. Ecol. Econ. 73, 152–157 (2012).

    Article  Google Scholar 

  46. Kubiszewski, I., Cleveland, C. & Endres, P. Meta-analysis of net energy return for wind power systems. Renew. Energy 36, 218–225 (2010).

    Article  Google Scholar 

  47. Rubin, E. S. et al. Use of experience curves to estimate the future cost of power plants with CO2 capture. Int. J. Greenhouse Gas Control 1, 188–197 (2007).

    Article  CAS  Google Scholar 

  48. van den Broek, M. et al. Effects of technological learning on future cost and performance of power plants with CO2 capture. Prog. Energy Combustion Sci. 35, 457–480 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the planning of the paper. N.M.D. led the work, benefiting from discussions with all authors. All authors contributed to writing the paper, providing comments to the framework, and input in terms of numbers and references backing the analysis.

Corresponding author

Correspondence to Niall Mac Dowell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mac Dowell, N., Fennell, P., Shah, N. et al. The role of CO2 capture and utilization in mitigating climate change. Nature Clim Change 7, 243–249 (2017). https://doi.org/10.1038/nclimate3231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing