Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemomechanical coupling of human mitochondrial F1-ATPase motor

Abstract

The rotary motor enzyme F1-ATPase (F1) is a catalytic subcomplex of FoF1-ATP synthase that produces most of the ATP in respiring cells. Chemomechanical coupling has been studied extensively for bacterial F1 but very little for mitochondrial F1. Here we report ATP-driven rotation of human mitochondrial F1. A rotor-shaft γ-subunit in the stator α3β3 ring rotates 120° per ATP with three catalytic steps: ATP binding to one β-subunit at 0°, inorganic phosphate (Pi) release from another β-subunit at 65° and ATP hydrolysis on the third β-subunit at 90°. Rotation is often interrupted at 90° by persistent ADP binding and is stalled at 65° by a specific inhibitor azide. A mitochondrial endogenous inhibitor for FoF1-ATP synthase, IF1, blocks rotation at 90°. These features differ from those of bacterial F1, in which both ATP hydrolysis and Pi release occur at around 80°, demonstrating that chemomechanical coupling angles of the γ-subunit are tuned during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP-driven rotation of human F1.
Figure 2: Catalytic events that occur in dwells.
Figure 3: Angular positions for ATP hydrolysis and Pi releasing or binding.
Figure 4: Rotation of human F1 in high [ATP] plus low [ATPγS].
Figure 5: Angular position of human F1 in inhibitory states.
Figure 6: A model of rotary catalysis of human F1 and assignment of crystal structures in the rotation scheme of human F1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase—a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669–677 (2001).

    Article  CAS  Google Scholar 

  2. Boyer, P.D. A research journey with ATP synthase. J. Biol. Chem. 277, 39045–39061 (2002).

    Article  CAS  Google Scholar 

  3. Senior, A.E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002).

    Article  CAS  Google Scholar 

  4. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  5. Yasuda, R., Noji, H., Kinosita, K. Jr. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  6. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  7. Adachi, K. et al. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 (2007).

    Article  CAS  Google Scholar 

  8. Furuike, S. et al. Axle-less F1-ATPase rotates in the correct direction. Science 319, 955–958 (2008).

    Article  CAS  Google Scholar 

  9. Watanabe, R. & Noji, H. Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein. Nat. Commun. 5, 3486 (2014).

    Article  Google Scholar 

  10. Feniouk, B.A., Kato-Yamada, Y., Yoshida, M. & Suzuki, T. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3. Biophys. J. 98, 434–442 (2010).

    Article  CAS  Google Scholar 

  11. Saita, E. et al. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation. J. Biol. Chem. 285, 11411–11417 (2010).

    Article  CAS  Google Scholar 

  12. Noji, H. et al. Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Commun. 260, 597–599 (1999).

    Article  CAS  Google Scholar 

  13. Omote, H. et al. The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 7780–7784 (1999).

    Article  CAS  Google Scholar 

  14. Spetzler, D. et al. Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration. Biochemistry 48, 7979–7985 (2009).

    Article  CAS  Google Scholar 

  15. Bilyard, T. et al. High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase. Phil. Trans. R. Soc. Lond. B 368, 20120023 (2013).

    Article  Google Scholar 

  16. Hong, S. & Pedersen, P.L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol. Mol. Biol. Rev. 72, 590–641 (2008).

    Article  CAS  Google Scholar 

  17. Cabezon, E., Butler, P.J., Runswick, M.J. & Walker, J.E. Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. J. Biol. Chem. 275, 25460–25464 (2000).

    Article  CAS  Google Scholar 

  18. Campanella, M. et al. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metab. 8, 13–25 (2008).

    Article  CAS  Google Scholar 

  19. Fujikawa, M., Imamura, H., Nakamura, J. & Yoshida, M. Assessing actual contribution of IF1, inhibitor of mitochondrial FoF1, to ATP homeostasis, cell growth, mitochondrial morphology, and cell viability. J. Biol. Chem. 287, 18781–18787 (2012).

    Article  CAS  Google Scholar 

  20. Magariyama, Y. et al. Very fast flagellar rotation. Nature 371, 752 (1994).

    Article  CAS  Google Scholar 

  21. Shimabukuro, K. et al. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc. Natl. Acad. Sci. USA 100, 14731–14736 (2003).

    Article  CAS  Google Scholar 

  22. Hirono-Hara, Y. et al. Pause and rotation of F1-ATPase during catalysis. Proc. Natl. Acad. Sci. USA 98, 13649–13654 (2001).

    Article  CAS  Google Scholar 

  23. Hirono-Hara, Y., Ishizuka, K., Kinosita, K. Jr., Yoshida, M. & Noji, H. Activation of pausing F1 motor by external force. Proc. Natl. Acad. Sci. USA 102, 4288–4293 (2005).

    Article  CAS  Google Scholar 

  24. Sielaff, H. et al. Domain compliance and elastic power transmission in rotary FoF1-ATPase. Proc. Natl. Acad. Sci. USA 105, 17760–17765 (2008).

    Article  CAS  Google Scholar 

  25. Okuno, D., Iino, R. & Noji, H. Stiffness of γ subunit of F1-ATPase. Eur. Biophys. J. 39, 1589–1596 (2010).

    Article  CAS  Google Scholar 

  26. Martin, J.L., Ishmukhametov, R., Hornung, T., Ahmad, Z. & Frasch, W.D. Anatomy of F1-ATPase powered rotation. Proc. Natl. Acad. Sci. USA 111, 3715–3720 (2014).

    Article  CAS  Google Scholar 

  27. Vasilyeva, E.A., Minkov, I.B., Fitin, A.F. & Vinogradov, A.D. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Biochem. J. 202, 15–23 (1982).

    Article  CAS  Google Scholar 

  28. Muneyuki, E. et al. Inhibitory effect of NaN3 on the F0F1 ATPase of submitochondrial particles as related to nucleotide binding. Biochim. Biophys. Acta 1144, 62–68 (1993).

    Article  CAS  Google Scholar 

  29. Hyndman, D.J., Milgrom, Y.M., Bramhall, E.A. & Cross, R.L. Nucleotide-binding sites on Escherichia coli F1-ATPase. Specificity of noncatalytic sites and inhibition at catalytic sites by MgADP. J. Biol. Chem. 269, 28871–28877 (1994).

    CAS  PubMed  Google Scholar 

  30. Okuno, D. et al. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proc. Natl. Acad. Sci. USA 105, 20722–20727 (2008).

    Article  CAS  Google Scholar 

  31. Kabaleeswaran, V., Puri, N., Walker, J.E., Leslie, A.G. & Mueller, D.M. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J. 25, 5433–5442 (2006).

    Article  CAS  Google Scholar 

  32. Braig, K., Menz, R.I., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 8, 567–573 (2000).

    Article  CAS  Google Scholar 

  33. Kagawa, R., Montgomery, M.G., Braig, K., Leslie, A.G. & Walker, J.E. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004).

    Article  CAS  Google Scholar 

  34. Lutter, R. et al. Crystallization of F1-ATPase from bovine heart mitochondria. J. Mol. Biol. 229, 787–790 (1993).

    Article  CAS  Google Scholar 

  35. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  36. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103, 8646–8649 (2006).

    Article  CAS  Google Scholar 

  37. Abrahams, J.P. et al. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc. Natl. Acad. Sci. USA 93, 9420–9424 (1996).

    Article  CAS  Google Scholar 

  38. van Raaij, M.J., Abrahams, J.P., Leslie, A.G. & Walker, J.E. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl. Acad. Sci. USA 93, 6913–6917 (1996).

    Article  CAS  Google Scholar 

  39. Gledhill, J.R., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. USA 104, 13632–13637 (2007).

    Article  CAS  Google Scholar 

  40. Cingolani, G. & Duncan, T.M. Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat. Struct. Mol. Biol. 18, 701–707 (2011).

    Article  CAS  Google Scholar 

  41. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J. Biol. Chem. 282, 14238–14242 (2007).

    Article  CAS  Google Scholar 

  42. Knowles, A.F. & Penefsky, H.S. The subunit structure of beef heart mitochondrial adenosine triphosphatase. Isolation procedures. J. Biol. Chem. 247, 6617–6623 (1972).

    CAS  PubMed  Google Scholar 

  43. Suzuki, T., Ueno, H., Mitome, N., Suzuki, J. & Yoshida, M. Fo of ATP synthase is a rotary proton channel. Obligatory coupling of proton translocation with rotation of c-subunit ring. J. Biol. Chem. 277, 13281–13285 (2002).

    Article  CAS  Google Scholar 

  44. Gupta, S., Grasnoff, S.B., Roberts, D.W. & Renwick, J.A.A. Structure of efrapeptins from the fungus Tolypocladium niveum: peptide inhibitors of mitochondrial ATPase. J. Org. Chem. 57, 2306–2313 (1992).

    Article  CAS  Google Scholar 

  45. Walker, J.E. et al. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184, 677–701 (1985).

    Article  CAS  Google Scholar 

  46. Furuike, S. et al. Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe. Nat. Commun. 2, 233 (2011).

    Article  Google Scholar 

  47. Suzuki, T., Suzuki, J., Mitome, N., Ueno, H. & Yoshida, M. Second stalk of ATP synthase. Cross-linking of γ subunit in F1 to truncated Fob subunit prevents ATP hydrolysis. J. Biol. Chem. 275, 37902–37906 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues B. Feniouk, N. Taniguchi and K. Sugawara (Japan Science and Technology Agency), S. Furuike (Osaka Medical college), K. Kinosita Jr., N. Soga and K. Adachi (Waseda University) and T. Hisabori (Tokyo Institute of Technology) for their valuable discussions. S. Furuike helped T.S. in setting up the center-shielded dark-field microscopic system. We thank K. Adachi (Waseda University) for the kind gift of the software program Center-5. The cDNA library from human lung cells was a kind gift from F. Ishikawa of Kyoto University and M. Fujikawa of the Japan Science and Technology Agency. This work was supported in part by grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (grant numbers 24570149 (T.S.) and 23227006 (M.Y.)).

Author information

Authors and Affiliations

Authors

Contributions

T.S. and M.Y. conceived and designed the experiments and wrote the paper. T.S. led development of the human F1 expression system in E. coli and the single-molecule observation system. E.S. gave critical suggestions for experiments and interpretations. K.T. and C.W. helped T.S. in collecting large amounts of image data.

Corresponding authors

Correspondence to Toshiharu Suzuki or Masasuke Yoshida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–7. (PDF 3445 kb)

Supplementary Video 1

Stepwise rotation of human F1. A sample of rotations of human F1 under conditions in Figure 2a (4 mM ATPγS, 50 kfps). (AVI 3004 kb)

Supplementary Video 2

Stepwise rotation of human F1. A sample of rotations of human F1 under conditions in Figure 2b (50 μM ATPγS, 50 kfps). (AVI 3004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Tanaka, K., Wakabayashi, C. et al. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol 10, 930–936 (2014). https://doi.org/10.1038/nchembio.1635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing